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Abstract—Security is a major concern for the Internet of Med-
ical Things (IoMT), however, many of these devices are limited
in their capabilities. Physical layer (PHY) security measures can
be used to prevent unauthorized access by exploiting intrinsic
emitter characteristics such as Specific Emitter Identification
(SEI), known as Radio Frequency Fingerprinting Identification
(RFFI). RFFI at the IoMT is a promising approach to secure
wearable Body Sensor Network (WBSN) devices. In this paper,
we evaluated the effect of human body shadowing on Radio
Frequency Fingerprinting Identification (RFFI) systems. Results
show that shadowing has a serious impact on RFFI models.
We also show that it can be mitigated by applying log-normal
shadowing augmentation. Results obtained from simulations and
experimental trials show that the classification accuracy increases
when the multipath channel model and shadowing block size of
640 are used. A new system model for classifying devices using
RFFI is then proposed. The proposed model achieved better
classification accuracy when evaluated using unseen shadowed
data.

Index Terms—RF impairment, Deep learning, radio frequency
fingerprint, emitter identification, ZigBee, device authentication.

I. INTRODUCTION

HERE has been massive growth in Internet of things
(IoT) embedded devices in various applications, includ-
ing smart cities, healthcare, agriculture, industry, etc. [1].
However, this has been accompanied by substantial growth
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in security vulnerabilities. Cyber threats against IoMT are
critical in that human life can be harmed. Therefore, calls
for urgent response are required to secure these devices and
save human lives. The lack of computational capacity in many
IoT devices leads to challenges in the device authentication
procedure. Furthermore, using passwords and Media Access
Control(MAC) as standard authentication techniques are sus-
ceptible to attacks such as impersonation [2]. Hence, using a
non-cryptographic technique as a device identification solution
at the physical layer, such as radio frequency fingerprinting
identification (RFFI), is a new option to eliminate spoofing
attacks. RFFI recently considered recognizing authenticated
transmitters using the unique variations imposed by hardware
impairments such as I/Q imbalance, phase noise, frequency
offsets, etc. [3].

Handcrafted feature extraction and deep learning-based ap-
proaches deploy RFFI as a passive physical layer authentica-
tion technique. The former approach extract features manually,
which requires protocol domain knowledge, while the latter
simplifies RFFI application by identifying hardware features
automatically regardless of the protocols used. Higher ac-
curacy and better feature extraction performance have been
noticeably shown in deep learning compared to the handcrafted
approaches [4]. Data representation [5], [6], network architec-
tures [7]-[10], and different hardware imperfections [11]—[13]
would be the most widely used techniques to extract unique
features and obtain better classification results.

However, the attributes of an emitted signal change when it
flows across a wireless channel, leading to degradation of the



RFFI accuracy. [14], was the first work that investigated the
effects of channel distortions on analog signal fingerprints.
They extracted Power Spectral Density (PSD) as a device
identifier fingerprint and investigated a multipath channel
fading with a constant Doppler shift using the Rician fading
channel model. They concluded that the accuracy of RFFI
under low multipath fading is mostly unaffected compared
to medium and high multipath fading. In 2019, ORACLE
was proposed to mitigate the channel effect in a dynamic
environment towards adopting a channel-robust RFFI systems
[13]. The researchers proposed to deploy demodulated data
representation instead of raw data, in addition to the feedback-
driven.

Data augmentation has recently gained high consideration
in developing channel robustness RFFI models. For instance,
multipath channel, including Rayleigh and path loss, was
used in [15] with a constant doppler shift. Soltani et al.
[16] proposed another channel robustness approach without
prior knowledge of the transmitted waveform, where data
augmentation was applied to the raw IQ data samples at both
the transmitter and receiver sides. [17] considered doppler
shift as a fixed parameter while Shen et al. [18] investigated
Multipath with a variation in doppler shift. Authors in [19]
evaluated the effect of feeding neural networks with datasets
from different channels, indicating that their model achieves
better accuracy when different channels are seen at the training
stage.

Howeyver, there is no work, as far as we know, that has
investigated the effect of human body shadowing on the
RFFI models. Therefore, this paper investigates the effect of
shadowing on the performance of RFFI models.

This paper is organized as follows. Section II presents an
overview of the RFFI system, including the different steps of
building the RFFI model. Section III shows the implemented
experimental design. The experimental results and analysis are
given in section IV, while section V concludes the paper.

II. RFFI SYSTEM

RFFI is considered as an authentication technology exploit-
ing hardware imperfections as a unique intrinsic characteristic.
ZigBee emitters operating at 2.4GHz use the Orthogonal
Quadrature Phase Shift Keying (OQPSK) technique for chip
modulation. The modulated signal enters a Digital-to-Analog
Converter (DAC) and then passes through quadrature upcon-
version mixers, power amplifiers (PA) and the antenna before
it is transmitted into the wireless channel. The receiver cap-
tures the transmitted signal, downconverts, and demodulates
it. Within this process, oscillators, amplifiers, mixers, etc.,
produce frequency deviations that can be used as device iden-
tifiers. The variations of crystal oscillators produce a carrier
frequency offset (CFO) and phase noise where mixers produce
I and Q mismatch and power amplifiers generate nonlinear
distortion. As shown in Fig.1, RFFI model includes different
steps after receiving emitter signals: A) Preprocessing, B)
Data Augmentation, C) Training and feature extraction, and
D) Classification.

A. Preprocessing

The basic steps in RFFI require preprocessing the received
signal via: a) a synchronization and preamble extraction. b)
The CFO is compensated and estimated to maintain system
stability. ¢) The signal is passed through a normalization
process. Then the data is ready for deep learning training and
classification.

« Synchronization and Preamble extraction: To prepare
the RFFI dataset, first the beginning of a packet should
be determined to prevent performance degradation and
then a region of interest (ROI) is extracted as an input to
the deep neural networks. In this paper, we extracted the
Synchronization Header(SHR) as the ROI.

e« CFO Compensation: Many researchers have investi-
gated CFO and proved that CFO compensation can help
to achieve accurate classification [17], [18], [20].

o Normalization: Normalizing the extracted preamble
helps neural networks to preserve and learn device-
specific characteristics. We compute the normalization as
follows:

yln] = ylnl/rms(yln]) (1)
Where y[n] denotes the preamble part.

B. Data Augmentation

Data augmentation techniques are used to synthetically
enhance the input datasets fed at training deep learning
models by transforming the existing samples into new
augmented samples. Data augmentation proved its efficiency
in strengthening the RFFI model against variations in channel
and noise during the inference phase [15]-[18].

C. Training Neural Network and feature extraction

Once the data is ready, input is fed to a neural network for
learning the unique features that allow a trained network to
distinguish between devices. The uniqueness of each transmit-
ter’s RF fingerprint results from manufacturing imperfections
is extracted as a feature vector.

D. Classification

RFFI model classification is a process of using features to
distinguish and identify the correct signal’s emitter. Classifica-
tion algorithms may be supervised or unsupervised such as The
K Nearest Neighbor(KNN), Support Vector Machine(SVM),
Neural Network(NN), k-Means clustering, and Decision Tree.

III. EXPERIMENTAL DESIGN

The physical layer specification at ZigBee devices is de-
fined by IEEE 802.15.4 [21]. Low-power, low-cost, short-
range characteristics allow ZigBee devices to be utilized in
a variety of IoT applications, such as medical care systems
[22], home automation [23], Intelligent agriculture [24], sensor
networks [25],etc. Quadrature Phase Shift Keying (QPSK) data
modulation and Direct Sequence Spread Spectrum (DSSS)
technologies are used in ZigBee devices with a 32-chip length
when the device operates at 2.4 GHz.
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Fig. 1. RFFI System Model

A. Setup

This experiment consists of five CC2531 ZigBee emitters,
which operate at 2.4 GHz, and one Adalm-Pluto SDR, As
shown in Fig. 2, is used to capture the transmitted packets in
Matlab employing Communications Toolbox Support Package
for USRP Radio. The center frequency at both transmitter and
receiver is set to 2.450 GHz (Channel 20). The Sampling
Rate of RF signals is configured at 12 Msamples/s which
is ten times oversampling compared to the 2 Mchip/s rates
at the 2.450 GHz ZigBee band. The Synchronization header
(SHR) field of the ZigBee physical format consists of two
parts (preamble (4 bytes) and SFD (1 byte)). SHR field with
ten symbols length of the ZigBee Physical layer waveform
was identified and used to extract RF fingerprint patterns.
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Fig. 2. RFFI experimental setup

B. Data Collection

Data were collected in three different scenarios (described
below), where transmitters are located within one meter
from the receiver, and CC2531 RF signal transmission is
employed by Texas Instruments SmartRF Studio 7 software.
The receiver captured 3000 packets with approximately 40K
samples per frame. The normalized received signal is shown

in Fig. 3. The datasets of each transmitter were captured on
different days and saved for further processing in Matlab.

1) Stationary scenario: Transmitter and receiver placed on a
table in a Line of Sight(LOS). The height from the floor
was 75 cm. This data was used to train a CNN network;

2) Shadowing scenario.l: Transmitter and receiver nodes
were stationary on a table, but the transmission was
blocked by a human body;

3) Shadowing scenario.2: Transmitter and receiver nodes
were stationary on a chair at 55 cm height, but the
transmission was captured while a human body was
walking back and forth between them,;

Amplitude
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Time (ms) w1017

Fig. 3. Normalized Received ZigBee waveform

C. Data Augmentation

In this paper, we use a Shadowing and Rician Multipath
channel model as described below:

1) Rician Multipath: This model characterizes multipath by
using the exponential Power Delay Profile (PDP) as follows:

1
P(p) = —e P/,
Td

Where the RMS delay spread is denoted as 74,

p:Oal7"' s Pmazx (2)

Following the multipath parameters used in [18], we used
a uniformly distributed RMS delay spread in a range of
[10,300]ns and the Rician K-factor in a range of [0,10].
Additive white Gaussian noise (AWGN) was included when
only the multipath channel model was selected, where it
ranged from zero to 60 dB. The signal will pass through the
multipath model first, and then the output from this is input
to the shadowing model.

2) Shadowing: Log-normal fading was used in this paper
to emulate shadowing with the mean p and standard deviation
of o. Therefore, the input signal is divided in blocks where
the mean average Signal Noise Ratio (SNR ) in each block
will change according to the log-normal distribution. In this
paper, Shadowing augmentation is carried out as follows:

o A vector generation of mean SNR values from zero to

60 dB;



Parameter / Dataset Blocks Stationary Shadowed (Scenario.1) Shadowed (Scenario.2)
Experiment No. Exp.1 | Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 | Exp.8 | Exp.9 Exp.10 | Exp.11 | Exp.12 | Exp.13
Multipath Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
348 Yes Yes
480 Yes Yes
640 Yes Yes Yes
Shadowing 960 Yes
Clzscsc‘f::z‘y““ 99% | 95.78% | 95.42% | 96.06% | 97.8% | 98.54% | 76% | 79.4% | 69.70% | 74.30% | 83.3% | 75.80% | 83.4%
TABLE 1

CLASSIFICATION ACCURACY VERSUS AUGMENTATION PARAMETER

o Standard deviation (o) distributed randomly in a range of
[1,12]dB, which is configured according to the level of
shadowing;

o Set the size of shadowing blocks in each signal. We
investigated the use of 384, 480, 640, and 960 blocks;

e Divide the number of signal samples (1920) by the
number of blocks configured to get the number of samples
in each block;

o The value of SNR per block is calculated by adding one
value from the mean SNR vector to the randomly selected
o value;

o The previous step is then repeated for the rest of the mean
SNR values;

D. CNN Design
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Fig. 4. CNN Architecture

Neural networks are trained to verify the genuineness of a
single transmitting device amongst a group of otherwise simi-
lar devices. Due to the outstanding performance in image iden-
tification and computer vision, Convolutional Neural Network
(CNN) has attracted several researchers to use this approach
in RFFI systems [13], [26]-[28]. CNN is also adopted in this
paper, as shown in Fig. 4, consisting of three convolutional
layers and two fully connected layers. Each Convolutional
(Conv) layer is followed by batch normalization (BN) and
leaky ReLU activation (LReLU) layer. The filter sizes of the
three Conv. layers were 2 x 128 with 8, 16, and 32 filters,
respectively. The output of the third convolutional layer is
input into a fully connected layer for classification, with the
softmax activation function used to identify the signal with its
corresponding device. In the Matlab Deep Learning Toolbox,
an Adam optimizer with an initial learning rate of 0.0001 and
30 epochs is used for training the CNN.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

According to IoMT devices, including wearable devices, we
demonstrated classification accuracy under static and dynamic
conditions where shadowing was tested. As shown in Table I,
the trained network performs better when the trained and tested
data are stationary with a classification accuracy above 95%.
However, it degrades sharply to 76% when shadowed data is
used at the inference phase where unseen datasets are used.
Therefore, to enhance the RFFI model performance, static
data is augmented and trained using the Rician multipath and
shadowing model. When data is augmented using a multipath
channel model only, the performance increases by only 3%
when tested with the unseen dataset. However, passing the
augmented data into a shadowing model assists in classifying
signals correctly to their corresponding emitters. We have
augmented and trained a network in 348, 480, 640, and 960
shadowing blocks to identify and achieve the best classifica-
tion accuracy. As shown in Figure.5, the best classification
accuracy is achieved when multipath and shadowing channel
models with 640 shadowing blocks are used. We have further
validated the model using new datasets when shadowing
performed by walking between the transmitter and receiver,
achieving 83.4%.

V. CONCLUSION

In this work, we propose an RFFI system model that is
able to distinguish devices in static and dynamic conditions
where human body shadowing affects the transmission. We
have evaluated the model in different scenarios: a) trained
and tested with static dataset achieves above 95%, b) trained
with static and tested with shadowed dataset achieves 83.4%
when the multipath and shadowing with 640 blocks are used.
Therefore, we have demonstrated that human body shadowing
severely affects the RFFI systems. Further experiments are
carried out to enhance the proposed model and achieve better
classification accuracy in shadowing scenarios. However, fu-
ture work is to look at how the model can be applied to other
radio communication systems.
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