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Abstract 

Radar-based object detection has been extensively studied, with many researchers employing deep learning models like PointNet 
for processing radar point clouds. However, a common challenge in this domain is dealing with sparse point clouds generated 
by commercial radar sensors. From a neural network perspective, managing redundant and noisy data is generally more feasible 
than handling sparse data. Some researchers have attempted to address this challenge by exploring the use of radar raw data, 
such as Range-Angle-Doppler (RAD) tensors, as input. However, RAD tensors are dense 3D tensors that demand significant 
memory and computational resources for storage and processing. In our study, we argue that the current point cloud 
representation is practical, but the point clouds generated by traditional detection pipelines tend to be overly sparse. To tackle 
these issues, we investigate point cloud extraction and feature design to better align with the requirements of deep learning 
models. Specifically, we propose a pipeline that employs binary segmentation for point extraction to minimize information loss. 
Additionally, we leverage local Signal-to-Noise Ratio (SNR) information to assign weights to each point, effectively mitigating 
the impact of redundant and noisy points. Our experimental results, based on our dataset, demonstrate that using our feature set 
can significantly enhance the accuracy of the PointNet model without requiring modifications to the model's architecture. 

1 Introduction 

Millimeter-wave (mmWave) radars have found widespread 
use in advanced driver assistance systems (ADAS) 
applications due to their maturity, compact size, and cost-
effectiveness [1]. While lidar remains a dominant sensor for 
autonomous driving, its high cost limits its widespread 
adoption. Consequently, researchers have increasingly turned 
their attention to mmWave radars. The growing demands for 
high-level autonomous driving require improved spatial 
resolution from radar sensors. Multiple-Input Multiple-Output 
(MIMO) techniques have significantly enhanced the 
performance of modern radar sensor. However, compared to 
advances in waveform and antenna design, the signal 
processing pipeline in commercial radars has seen limited 
progress. Traditional radar signal processing pipelines enable 
reliable detection and tracking of moving targets, but they have 
limited classification capability and poor detection ability for 
static objects. These limitations restrict their adoption in 
autonomous driving scenarios. 

The practical automotive radar detection framework can be 
divided into two main components: the sensor end and the 
central computing end. The signal processing pipeline is 
efficiently implemented onboard the radar sensor end, where 
the radar point cloud is generated as an output. This radar point 
cloud is then transmitted to the computing units, where it is 

possible to apply deep learning models to provide reliable 
detection results. In the traditional radar pipeline, the Constant 
False Alarm Rate (CFAR) detector is employed to extract 
point detections. Additionally, unsupervised clustering 
methods, such as Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), are used to propose 
clusters from the radar point cloud. Significant effort has been 
devoted to feature set design and selection for the cluster.  

In recent years, researchers have been exploring deep learning 
methods for radar perception without the need for traditional 
feature engineering. These neural networks can accept various 
representations of radar data as input, including ADC signals 
[2], range profiles [3], range-angle (RA) maps [4], RAD 
tensors [5,6,7], point clouds [8], and the concatenation of 
CFAR detections with the RA map [9]. However, despite the 
popularity of using pre-CFAR data as input in many recent 
research papers, these methods may not be practical for real-
world radar sensors. This is due to the limited computational 
resources available at the edge, making it challenging to 
process raw radar data using deep learning techniques. One 
potential solution is to transfer the pre-CFAR data to a central 
computing unit for processing. However, this design approach 
is not widely adopted due to the limited transmission 
bandwidth required to transfer large pre-CFAR data. 
Additionally, from an algorithmic perspective, pre-CFAR data 
has disadvantages, including inaccurate annotation and 
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redundant computation wasted on background cells. In this 
work, we focus on using the radar point cloud as input. The 
traditional radar detection pipeline with the point target 
assumption faces difficulties in two aspects. Firstly, estimating 
the threshold for CFAR proves challenging, resulting in the 
loss of spatial information of weak scattering points. The RD 
CFAR detector also faces challenges with static object 
detection. Secondly, small objects may be misidentified as 
clutter or noise during the clustering stage. Due to information 
loss during the CFAR and DBSCAN processes, the power of 
deep learning-based classifiers cannot be fully exploited. 

In this work, we explore a simple yet effective method to 
increase the point cloud density by treating the detection as a 
dynamic binary segmentation task. The resulting point cloud 
is noisy, but we design an SNR-based attention mechanism to 
assign weights to the points. By modifying the point cloud 
density and feature dimension, our PointNet-based model 
outperforms other models with multi-scale architecture and 
powerful local feature detectors. 

The remainder of this article is organized as follows: Section 
2 provides highlights of research progress in radar point cloud 
processing. Section 3 presents a detailed explanation of our 
proposed point cloud extraction and feature set design method. 
Section 4 introduces the dataset and experimental settings. In 
Section 5, the experimental results are thoroughly analyzed. 
Finally, Section 6 concludes this article. 

2. Related Works 

In traditional radar point cloud processing, hand-crafted 
features are extracted for each radar cluster and utilized as 
inputs for machine learning classifiers. Scheiner et al.[10] 
extensively explore feature design for the random forest and 
LSTM classifiers. These features can be broadly categorized 
into three groups: statistical features based on fundamental 
radar measurements like range, angle, amplitude, and Doppler; 
geometric features describing the spatial distribution of 
detections within radar clusters, including measurements 
related to bounding boxes; and micro-Doppler features 
capturing fine-grained motion information by examining the 
distribution of Doppler values within clusters. Experimental 
findings have highlighted the value of geometric features and 
micro-Doppler features as complementary additions to the 
standard sensor output. In their subsequent work [11], they 
introduce a feature selection strategy to identify optimized 
feature sets for ensemble classifiers. Although ensemble 
classifiers often utilize most features, individual classifier 
results suggest that range and Doppler features hold greater 
importance, while angular and shape-related features tend to 
be excluded during feature selection due to the low angular 
resolution of the automotive radar sensors employed. 

With the introduction of large-scale radar dataset and 
advancement in model architecture, deep learning methods 
outperform traditional machine learning classifiers across 
various tasks. The deep learning methods for processing radar 
point clouds can be categorized into two paradigms.  

The first paradigm involves using PointNet  variants to process 
radar point clouds. PointNet's architecture was initially 
designed for point clouds with higher density and detailed 
local structures, but it can be adapted for radar point clouds 
with some modifications to input dimensions. PointNet [12] 
extracts point-wise features using shared MLPs and aggregates 
these features in the max-pooling layer. PointNet++ [13] 
extends this structure by creating a hierarchical architecture 
through sampling and grouping point features at multiple 
scales. Recent improvements focus on enhancing local 
geometric feature extraction using techniques like convolution 
[14], graph neural networks [15], or attention mechanisms [16]. 
However, the recent work [17] suggests that a deeper 
architecture consisting of multiple lightweight residual MLP 
modules can achieve good performance without complex local 
geometry extractors. 

The second paradigm involves converting point clouds into 
dense representations, such as grids or pillars, and then 
applying CNN for processing. However, one challenge with 
this approach is the potential loss of distribution information 
when aggregating point cloud data into grids.  To address this, 
Kohler et al. [18] leverage the kernel point convolutions to 
improve the encoding of local point cloud contexts during grid 
rendering. Liu et al. [19] build pillar representation and density 
features through kernel density estimation (KDE) in feature 
encoding stage.  

Scheiner et al. [20] conduct a comprehensive comparison of 
various methods for radar point segmentation tasks, including 
DBSCAN+LSTM, PointNet++ with DBSCAN, PointPillars, 
grid mapping + YOLOv3, and PointNet++ with LSTM. Their 
experimental results revealed that the YOLOv3 architecture 
achieved the best performance, followed closely by a modular 
approach combining PointNet++, a DBSCAN algorithm, and 
an LSTM network. PointPillars, on the other hand, performed 
significantly worse than the other methods, possibly due to the 
low resolution of the radar data used in their experiments. 

3. Methodology 

3.1 Point Cloud Extraction 
We follow the traditional radar signal processing pipeline 
which applies range FFT and Doppler FFT to obtain the radar 
RD map. The next step is to extract point clouds from the RD 
map. The traditional method involves firstly apply CFAR 
detector to RD map, then resolve the angle for each detection. 
This detection pipeline is widely used for several reasons: 
radar typically exhibits low spatial resolution, allowing it to be 
effectively modelled as point targets, and the limited 
bandwidth of the Controller Area Network (CAN) protocol 
expects fewer detections for real-time transmission.  However, 
with the emergence of high-resolution radar, many researchers 
argue that the traditional detection pipeline sacrifices valuable 
spatial information and overlooks static objects. Furthermore, 
deep learning models are known to be more resilient to input 
noise than information loss. The introduction of automotive 
ethernet further allow the transmission of large-scale point 
cloud data. Nevertheless, as discussed in the previous section, 
we suggest that directly processing raw radar data is 
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computationally intensive and cannot achieve real-time 
performance. To obtain a radar representation that is both 
sufficient and feasible, we propose a method to extract point 
clouds from the RA map using image binary segmentation 
method. 

Regarding the radar RA map, we treat it as an image and apply 
binary segmentation methods, which are commonly used to 
distinguish between foreground and background in images.  
However, traditional image segmentation methods are 
typically applied globally, which can be problematic when 
dealing with the non-uniform energy scale of different object 
classes, such as pedestrians with a low Radar Cross Section 
(RCS). To address this, we utilize a sliding window technique 
to extract local patches from the radar data and perform 
segmentation within each window.  

For binary segmentation, we utilize Otsu's method, which 
iteratively calculates an optimal threshold by minimizing 
within-class variance and maximizing between-class variance. 
The threshold 𝑡𝑡∗ equation is computed as follows 

 𝑡𝑡∗  =   arg max
𝑡𝑡

�𝜇𝜇𝑇𝑇  ⋅ 𝑃𝑃(𝑡𝑡)  −  𝜇𝜇(𝑡𝑡)�2

𝑃𝑃(𝑡𝑡)  ⋅ �1  −  𝑃𝑃(𝑡𝑡)�
  (3.1) 

where 𝑡𝑡∗is the optimal threshold, 𝜇𝜇𝑇𝑇 is the average intensity 
within the window, 𝑃𝑃(𝑡𝑡) is the cumulative sum of probabilities 
up to intensity level 𝑡𝑡 and  𝜇𝜇(𝑡𝑡) is the cumulative mean up to 
intensity level 𝑡𝑡. 

The threshold is then applied to each window, assigning cells 
below the threshold to the background class and those above 
or equal to the threshold to the point cloud detection list. Once 
we have the RA point cloud, we determine the Doppler 
velocity by identifying the peak value along the Doppler 
dimension in the RAD tensor. 

 

Figure 3.1 Intensity Distribution and Segmentation Threshold 

3.2 Feature Extraction 
Suppose the region proposal method is applied to extract the 
possible bounding box in RA map, then we select the 
foreground cells within the bounding box as the point cloud 
representation for each object. Since radar has higher 
dimensions of features in addition to the spatial distribution, 
we further investigate the feature extraction methods for radar 
point cloud. 

The features can be categorized into two types: point-level 
features and cluster-level features. Point-level features include 
the intensity and the Doppler information of individual 

detections. Cluster-level features include the number of points 
and the feature distribution within each cluster. One limitation 
of point-level features is that they do not fully capture the 
relationships between points. In dense point clouds like lidar 
data, relationships between points can be captured using multi-
scale down sampling. This approach takes advantage of the 
dense spatial information available in lidar point clouds. 
However, for radar point clouds, many adjacent points are 
filtered out due to the peak detection characteristics of the 
CFAR detector. As a result, the spatial relationships between 
points in radar data become less apparent. In our work, we 
address this issue by using the local SNR as a descriptor of the 
relationships between adjacent cells. Local SNR provides a 
measure of the signal strength relative to the surrounding noise 
cells. By incorporating SNR as a descriptor, we can effectively 
capture the relatively distribution of intensity within each 
cluster. 

Similar to the operations in the CFAR detector, we calculate 
the local SNR in a sliding window mechanism. As illustrated 
in Figure 3.2, we split the window around the test cell into two 
sets: training cells and guard cells. The training cells are used 
to estimate the average power level of clutter or noise present 
in the radar data. They provide a reference for the background 
signal. On the other hand, the guard cells consist of cells 
around the peaks, which are caused by the side-lobe of the 
radar beam. Guard cells serve to prevent these side-lobe peaks 
from affecting the SNR calculation. The local SNR is then 
defined as the ratio of the intensity of the test cell to the 
average power level estimated from the training cells. This 
calculation allows us to obtain the SNR value for each 
detection, providing a measure of the signal strength relative 
to the background noise or clutter. As depicted in Figure 3.2, 
we calculate SNR in both RA and RD maps to model the 
energy distributional features along different dimensions. 

 

Figure 3.2 Local SNR for RA map and RD map 

3.2 Attention Module for Intensity Features 
When testing the vanilla PointNet on radar datasets, several 
observations were made. Firstly, it was found that not all 
points in the radar data carry equal importance. If we apply 
peak grouping to significantly reduce the density of point 
cloud, the performance drops but not very much. This finding 
suggests that certain points, particularly those with high 
relative intensity, are more crucial for classification. The 
second observation relates to the impact of modifying the SNR 
by adding Gaussian white noise to the test set. The classifier's 
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performance significantly dropped in low SNR cases. The 
detection methods returned numerous noisy data points, 
affecting the spatial distribution of the point cloud and 
consequently impacting classification accuracy.  

To address these issues and improve the model's robustness, 
an attention mechanism is proposed, associating weight maps 
to data points to achieve a more reliable performance. The 
point properties, such as range and Doppler, represent physical 
measurements with clear interpretations.  Applying attention 
to these features in earlier layers will lead to unrealistic 
measurements. Among all these features, intensity is better 
suited to be interpreted as the confidence feature. In our feature 
design, we have included two additional local SNR features. 
These two SNR features can be considered as transformed 
versions of intensity and provide energy distributional 
information in two different views. To fuse the intensity 
information, we have designed a lightweight attention module, 
as illustrated in Figure 3.3.  The SNR in the RA dimension 
serves as query, and the SNR in the RD dimension serves as 
key. No additional weight matrix is used, as the SNR can be 
regarded as a pre-calculated adaptive transformation applied 
to intensity. It also saves computation and avoid overfitting 
during training. The attention score matrix is obtained by 
calculating the dot product between the query and key matrices 
and applying the softmax function. Next, the intensity is 
multiplied with a learnable parameter matrix to obtain the 
value matrix. The transformed intensity is then multiplied with 
the attention score matrix to obtain the attention-aware 
representation of intensity.  

 𝐼𝐼′ = softmax(SNRRA(𝐼𝐼) ⋅ SNRRD(𝐼𝐼)𝑇𝑇)𝑉𝑉(𝐼𝐼) (3.2) 

where 𝐼𝐼 is the intensity,  SNRRA  and SNRRD  are the pre-
calcaulated local SNR in RA and RD maps respectively, 𝑉𝑉 is 
a learnable weight matrix, 𝐼𝐼′  is the attention-aware 
representation of the intensity after applying the attention 
mechanism. Then, this enriched representation is concatenated 
with the other features and fed into subsequent layers of 
PointNet. 

The attention module offers two main benefits: firstly, it 
reduces the input dimension, thereby decreasing the model size 
and enabling higher computational efficiency. Secondly, it 
enhances the model's ability to recognize critical points and 
relationships among data points, resulting in improved 
classification accuracy. 

 

Figure 3.3 Attention Module to Fuse Intensity Features 

3.3 Radar PointNet 
In this project, the classification model is built on the PointNet 
architecture, as depicted in Figure 3.4. PointNet utilizes shared 
MLPs applied point-wise, followed by a global max-pooling 
to extract global feature of the input point cloud.  However, the 
vanilla PointNet architecture is designed for high-resolution 
3D point cloud data and may not be suitable for radar data. 
Radar point cloud is inherently sparse, making it difficult to 
visually identify local geometrical features. 

The main characteristics of radar point clouds are their sparsity 
and high dimensionality. As illustrated in the previous section, 
our radar point cloud consists of 7 dimensional features, 
including range, azimuth, Doppler velocity, number of points, 
intensity, SNR in RA dimension, and SNR in RD dimension. 
For the point-level features, we can directly feed them into the 
PointNet to extract point-wise features. For the cluster-level 
feature, such as number of points, we can add it into the global 
features after the max-pooling layer. Therefore, the vanilla 
PointNet for radar point cloud takes a (Batch, N, 6) dimension 
point cloud as input to the PointNet head. If we employ the 
attention module to intensity features, the input size can be 
reduced to (Batch, N, 4). Then, the number of point feature is 
appended to the 1D features after max pooling to get a (Batch, 
1024) dimensional global feature. Finally, the MLP-based 
classification head is used to predict the class distribution of 
the point cloud. 

 

Figure 3.4 Radar PointNet Architecture 

3.4 Focal Loss 
Given that many radar datasets suffer from data imbalance, 
often stemming from limited scenarios and challenges in 
annotating vulnerable road users, we employ the focal loss as 
a solution to tackle this issue. The focal loss is a tailored loss 
function designed specifically to address class imbalance 
problems in multi-class classification tasks. Its main objective 
is to enhance the model's performance by assigning greater 
weights to challenging, misclassified instances, while reducing 
the weight of correctly classified ones. This strategic 
weighting allows the model to pay more attention to difficult 
examples and effectively handle datasets with imbalanced 
class distributions.  

Mathematically, the focal loss for multi-class classification is 
defined as follows: 

 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −�((1 − 𝑝𝑝𝑖𝑖)γ ⋅ log(𝑝𝑝𝑖𝑖))
𝑁𝑁

𝑖𝑖=1

 (3.3) 

where 𝑁𝑁 represents the number of classes, 𝑝𝑝𝑖𝑖 is the predicted 
probability of the 𝑖𝑖-th class, and γ is the focal parameter that 
controls the degree of downweighting. 
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4 Datasets and Experiments 

4.1 Datasets 
Recently, several radar datasets have been made public 
available for benchmarking deep learning methods.  To 
investigate on feature design of point cloud, it is essential to 
have a dataset that includes radar raw data. Consequently, we 
have selected the dataset used in RADDet [7]. The radar sensor 
used in this dataset is the TI AWR1843-BOOST 77GHz radar, 
positioned on the sidewalks and facing the main roads. In the 
azimuth plane, the radar comprises 2 transmit (Tx) and 4 
receive (Rx) antennas, forming a virtual 8-antenna receiving 
array with a 3dB beamwidth of 15 degrees. The waveform is 
configured for short range mode, offering a maximum range 
of 50 meters.  The dataset provides synchornized radar RAD 
data and stereo camera data. The radar RAD data is 
represented as a three-dimensional tensor with dimensions of 
(256, 256, 64) corresponding to range, angle, and Doppler, 
respectively. It has a range resolution of 0.19 m per bin, an 
angular resolution of 0.34 degrees per bin, and a velocity 
resolution of 0.42 m/s per bin.  

The original dataset was designed for the detection purpose 
with radar RAD tensor as inputs. We regenerated the 
classification dataset by applying CFAR to get the point clouds, 
cropping the points within the bounding boxes and associating 
the corresponding labels. The resulting dataset contains 12,211 
frames of radar point clouds for the classification task. The 
annotations cover six categories, namely 'person', 'bicycle', 
'car', 'bus', and 'truck'. However, the data distribution is 
imbalanced, with the 'car' category being dominant, 
accounting for 60.5%, while 'person' and 'truck' account for 
21.3% and 14.2%, respectively. The remaining data belong to 
'bus' and 'bicycle'. From Figure 4.1 (a), we can clearly observe 
that the distribution of objects is predominantly concentrated 
in the short-range area. From Figure 4.1 (b), we notice a 
decreasing trend in the number of points as the range increases. 
This suggests that objects farther away from the radar sensor 
tend to have fewer detected points, which aligns with the 
expected behavior of radar reflections. Additionally, we 
observe that vulnerable road users, including pedestrians and 
bicycles, contain a much smaller number of points compared 
to other objects. This phenomenon is a result of their weak 
reflection characteristics, making them challenging to detect 
accurately with radar. 

 

 

Figure 4.1 Dataset Statistics 

 

4.2 Evaluation Metrics 
In our paper, we have employed a range of classification 
metrics to comprehensively evaluate the model's performance. 
Accuracy serves as a fundamental metric for measuring the 
overall correctness of predictions. Additionally, we utilize 
balanced accuracy, which is defined as the average of recall 
obtained for each class, especially useful for assessing models 
on our imbalanced datasets. For a finer-grained evaluation of 
the model's performance across different classes, we calculate 
precision, recall, and F1 score. Precision measures the model's 
ability to make correct positive predictions, recall assesses the 
model's capacity to capture all positive instances, and the F1 
score provides insights into the model's performance on 
individual classes by balancing precision and recall. 

4.3 Experiment Settings 
For the input data, we utilized a uniform sampling process to 
upsample or downsample each point cloud into 225 points. 
With a batch size of 32 and a feature dimension of 5, the 
resulting input data is shaped as (32, 225, 5). To ensure a fair 
evaluation of our model's performance, we adopted a random 
shuffle and split strategy to create three subsets: 80% for 
training, 10% for validation, and 10% for testing. This 
partitioning scheme allowed us to train the model on the 
majority of the data while assessing its performance on an 
independent subset for better test of generalization. 

Regarding the training criterion, we set the gamma value to 1 
for the focal loss and used a weight of 0.001 for the affine 
transformation loss. During testing, we employed the standard 
cross entropy loss criterion to evaluate the model and selected 
the best candidate based on its performance. For the training 
settings, we utilized the Adam optimizer with a learning rate 
of 0.01 to optimize the model's parameters during training. The 
maximum number of epochs for training was set to 100. 
Additionally, we employed the early stopping technique with 
a patience value of 10 epochs, which enabled us to halt training 
if the model's performance did not improve for a specified 
number of epochs. This strategy helps prevent overfitting and 
saves computational resources. 

Instead of our proposed radar PointNet, we also compared 
other popular models for point cloud processing, including 
PointNet [13], PointNet++[14], PointConv[16], PointMLP[17] 
and PointCloudTransformer[18]. Since these models are 
originally designed for high resolution point cloud 
classification, we modify their network structures to better suit 
sparse radar point cloud. Most of these models have a 
hierarchical architecture inspired by PointNet++, so we take 
PointNet++ as an example to illustrate how we adapted the 
model architecture. Specifically, the first Set Abstraction (SA) 
layer operates on 64 points, with a sampling radius of 2 units 
and 32 samples per point. It applies an MLP with hidden layer 
sizes [64, 64, 128]. The second SA layer operates on 16 points, 
with a sampling radius of 4 units and use an MLP with hidden 
layer sizes [128, 128, 256]. The third layer groups all points 
together and applies an MLP with hidden layer sizes [256, 512, 
1024]. 
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5 Results Analysis 

5.1 Comparison of Classifiers 
Table 1 provides a comparison of different models based on 
their accuracy, balanced accuracy, number of parameters 
(Params), and floating-point operations (FLOPs). Among the 
models evaluated, our proposed radar PointNet achieves the 
second highest accuracy of 84.55%, outperforming the other 
models. It also demonstrates the highest balanced accuracy of 
61.80%, indicating better performance in handling imbalanced 
datasets. Since we mainly modify the input to the vanilla 
PointNet, compared to the vanilla PointNet, the accuracy 
improve significantly, indicating the effectiveness of our 
feature design. 

Interestingly, the Random Forest classifier are even higher 
than the other deep learning models. It indicates that the global 
statistics play a more important role than local spatial 
distribution. PointNet++ show competitive results with 
accuracies of 84.75% and balanced accuracy of 55.15%, which 
indicate the multi-scale features are important for the 
classification task. This in line with the results from random 
forest which indicates that the vanilla PointNet is too weak to 
extract global features from the radar point cloud, thus has the 
weaker performance. PointMLP achieves an accuracy of 81.89 
with a relatively low parameter count and FLOPs. The 
transformer architecture PCT display very lower accuracy of 
61.50%, while having highest FLOPs. The transformer 
architecture further enhances the local geometric structure, 
however not suitable for radar point cloud with irregular 
distribution.  

Overall, the table highlights the importance of global statistics 
within the radar point cloud and the transformer model can 
finds hard to extract the attention map from the local structure 
due to the randomly distribution of the scattering points. 
Therefore, our SNR-based attention is more reasonable for 
radar point cloud and can significantly improve the PointNet 
performance. 

Table 1 Classification Performance Comparison 
 

Model Accuracy 
(%) 

Balance 
Acc(%) 

Params 
(M) 

FLOPs 
(M) 

RandomForest 82.51 46.66 - - 
PointNet 
PointNet++  
PointConv  
PointMLP  
PCT 

81.64 
84.75 
82.39 
81.89 
61.50 

43.33 
55.15 
44.92 
52.60 
20.54 

1.604 
1.467 

19.561 
0.294 
2.933 

66.307 
44.721 
96.374 
10.961 

113.230 
Ours 84.55 61.80 1.606 66.270 

 

To better understand our improvements over vanilla PointNet, 
we plot the confusion matrix of the vanilla PointNet (a) and 
our model (b) in Figure 5.1. From the left, we can find the truck 
and bus are very hard to discriminate. All the predicted bus are 
actually bus. This is because of the imbalanced dataset and the 
similar geometric point distribution between these two classes. 
After we apply the intensity features and focal loss, we can 

find most of the bus and truck are classified correctly. 
However, the bicycle class show some performance 
degradation, as it is confused with car and person, despite have 
different geometric distribution. This further inspire the future 
work which balance between intensity and geometric features. 

 

Figure 5.1 Confusion Matrix 

5.2 Point Detection Methods 
In this section, we compare the point detection methods, 
including the RA CFAR, RD CFAR, our proposed binary 
segmentation and the grid mapping representation. Figure 5.2 
shows the mask of detections extracted from different CFAR 
detectors. The RA CFAR show significant spreads in angle 
dimension due to low angular resolution. Therefore, we apply 
a peak grouping for better localization of the point target. In 
Figure 5.3, we visualize an example of the detected point cloud 
of a vehicle given three different detectors. In addition, the grid 
mapping representation is built upon the binary segmentation 
by accumulating the detection result in a grid map and resize 
the image into the size of [224,224]. 

 

Figure 5.2 Detection Mask by CFAR Detectors 

 
Figure 5.3 Comparisons of Point Cloud Density 

Tabel 3 investigates the effect of spatial density. From the table, 
we can find our method will return far more point detections 
per object than traditional CFAR detector and achieve the best 
performance. Although the points detected by our methods is 
much noisy than CFAR detector, the neural network is robust 
to these noisy input and benefits with simply increase the point 

(a) (b) (c)
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density. The grid mapping representation lower the accuracy 
since the improper quantization.   

Table 3 Effect of Spatial Density 
 

Method Average Point Number Accuracy(%) 
RA CFAR 5 77.33 
RD CFAR 38 81.15 
Binary Seg 172 84.55 
Grid Mapping 302 (occupied pixels) 79.91 

 

5.3 Feature Importance 
Table 4 investigate the feature importance for different classes 
using F1 score. To mitigate the effects feature design, we use 
the vanilla PointNet as the base classifier. When using all 
features, the Car and Person classes achieve relatively high F1 
scores, but the Truck, Bus and Bicycle classes perform poorly. 
Conver the coordinate from Cartesian to Range Doppler index 
leads to poorer performance, possibly due to the irregular 
shapes in RD map confuse the classifier than the simple point 
cluster in Cartesian coordinate. Excluding the Doppler feature 
decreases overall performance, particularly for Truck, Bus, 
and Bicycle. Omitting the Number of Points feature 
significantly impacts the Bicycle class. It decreases truck and 
increase bus performance. Since these two classes are easily 
confused with each other, the performance change does not 
reveal significant information. This also applies to the intensity 
where the same phenomenon happens. The absence of the 
Intensity feature leads to minor performance decreases. 
Overall, we can find use all features leads to the best 
performance. 

Table 4 Feature Importance 
 

Feature F1 Score 
Car Truck Person Bus Bicycle 

All 
XY to RD 
w/o Doppler 
w/o Npts 
w/o Intensity 

90.39 
88.33 
85.84 
88.77 
87.60 

46.93 
11.27 
7.97 
28.76 
9.56 

88.75 
89.24 
82.77 
85.59 
87.90 

25.00 
0.00 
0.00 
51.61 
53.33 

31.58 
11.76 
0.00 
0.00 

26.67 

5.4 Effect of SNR-based Attention 
Table 5 investigates the effectiveness of our proposed attention 
mechanism for intensity features. In this analysis, "multi-head" 
implies the use of three query-key pairs: SNRRA - SNRRA  , 
SNRRD- SNRRD and SNRRA- SNRRD, and "single head" means 
we only employ the SNRRA - SNRRD head. The table results 
suggest that the utilization of attention modules can 
significantly enhance the precision of truck and bus 
identification and the recall of the bicycle class. Furthermore, 
the multi-head mechanism introduces slight additional 
improvements across most of the classes. 

In Figure 5.4, we select some data examples for each class and 
plot the attention map for the point cloud. We can find the SNR 
attention mechanism performs a similar way as kernel fitting. 
For the close range detections the peak of intensity are 

assigned to more weights, while the detections at distance all 
the weights are assigned to points spanning the whole objects. 

Table 5 Effectiveness of SNR Attention 
 

Classifier Precision 
Car Truck Person Bus Bicycle 

Multi-Head 
Single-Head 
w/o Attention 

82.81 
83.97 
81.65 

92.19 
79.17 
72.22 

89.30 
82.82 
82.18 

73.33 
66.67 
0.00 

86.21 
69.44 

100.00 
 Recall 
 Car Truck Person Bus Bicycle 
Multi-Head 
Single-Head 
w/o Attention 

97.50 
93.79 
96.53 

23.05 
22.27 
15.23 

91.50 
95.97 
92.84 

57.89 
52.63 
0.00 

39.06 
39.06 
1.56 

 

 
Figure 5.4 Attention Visualization  

6 Conclusion 

Most radar point cloud analysis work has primarily focused on 
designing model architectures. However, in this study, we've 
undertaken an investigation into the impact of point cloud 
generation and feature set design on radar point cloud 
classification tasks. We've proposed a straightforward yet 
highly effective method to increase point cloud density and 
enrich the feature set. Our approach involves reinterpreting the 
detection task as a dynamic binary segmentation problem. 
While the resulting point cloud may exhibit noise, we have 
innovatively introduced an SNR-based attention mechanism 
designed to assign weights to individual points. By 
strategically adjusting point cloud density and feature 
dimension, our radar PointNet model consistently outperforms 
alternative models. 

In future research, we plan to explore the incorporation of 
features into the point sampling mechanism used in 
hierarchical model architectures. Additionally, we will 
investigate the balance between geometrical features and 
intensity features to further enhance radar point cloud 
classification. 



8 
 

7 Acknowledgements 

This work received financial support from Jiangsu Industrial 
Technology Research Institute (JITRI) and Wuxi National Hi-
Tech District (WND). 

8 References 

[1] Zhou, Y., Liu, L., Zhao, H., et al.:'Towards deep radar 
perception for autonomous driving: Datasets, methods, and 
challenges', Sensors, 2022, 22(11), p.4208 
[2] Giroux, J., Bouchard, M., Laganiere, R.:'T-FFTRadNet: 
object detection with swin vision transformers from raw adc 
radar signals', arXiv preprint, 2023, 2303.16940 
[3] Liu, Y., Wang, F., Wang, N., et al.:'Echoes Beyond Points: 
Unleashing the Power of Raw Radar Data in Multi-modality 
Fusion', arXiv preprint, 2023, 2307.16532 
[4] Wang, Y., Jiang, Z., Li, Y., et al.:'RODNet: A real-time 
radar object detection network cross-supervised by camera-
radar fused object 3D localization. IEEE Journal of Selected 
Topics in Signal Processing', 2021, 15(4), pp.954-967 
[5] Ouaknine, A., Newson, A., Pérez, P., et al.: 'Multi-view 
radar semantic segmentation'. In Proc. Int. Conf. Computer 
Vision, Virtual, October 2021, pp. 15671-15680 
[6] Gao, X., Xing, G., Roy, S., et al.:'Ramp-cnn: A novel 
neural network for enhanced automotive radar object 
recognition',  IEEE Sensors Journal, 2020, 21(4), pp.5119-
5132. 
[7] Zhang, A., Nowruzi, F.E., Laganiere, R:'Raddet: Range-
azimuth-doppler based radar object detection for dynamic road 
users', Conf. Robots and Vision, Virtual, May 2021, pp. 95-
102 
[8] Danzer, A., Griebel, T., Bach, M., et al.:'2d car detection in 
radar data with pointnets', IEEE Intelligent Transportation 
Systems Conference, Auckland New Zealand, October 2019, 
pp. 61-66 
[9] Shao, Z., Zhang, X., Xu, X., et al.:'Cfar-guided convolution 
neural network for large scale scene sar ship detection', IEEE 
Radar Conference, San Antonio, USA, May 2023, pp. 1-5 
[10] Scheiner, N., Appenrodt, N., Dickmann, J., et al.:'Radar-
based feature design and multiclass classification for road user 
recognition', IEEE Intelligent Vehicles Symposium, Changshu, 
China, June 2018, pp. 779-786 
[11] Scheiner, N., Appenrodt, N., Dickmann., et al.:'Radar-
based road user classification and novelty detection with 
recurrent neural network ensembles', Paris, France, IEEE 
Intelligent Vehicles Symposium, June 2019, pp. 722-729 
[12] Qi, C.R., Su, H., Mo, K., et al.:'Pointnet: Deep learning 
on point sets for 3d classification and segmentation', Proc. 
IEEE Conf. Computer Vision and Pattern Recognition 
Honolulu, Hawaii, July 2017, pp. 652-660 
[13] Qi, C.R., Yi, L., Su, H., et al.:'Pointnet++: Deep 
hierarchical feature learning on point sets in a metric 

space', Advances in neural information processing 
systems, 2017, 30 
[14] Wu, W., Qi, Z., Fuxin, L.:'Pointconv: Deep convolutional 
networks on 3d point clouds', Proc. IEEE Conf. Computer 
Vision and Pattern Recognition, Long Beach, USA, June 2019, 
pp. 9621-9630 
[15] Wang, Y., Sun, Y., Liu, Z., et al.:'Dynamic graph cnn for 
learning on point clouds', ACM Transactions on Graphics, 
2019, 38(5), pp.1-12. 
[16] Ma, X., Qin, C., You, H., et al.:'Rethinking network 
design and local geometry in point cloud: a simple residual 
mlp framework', Int. Conf. Learning Representations, Virtual, 
October 2021 
[17] Guo, M.H., Cai, J.X., Liu, Z.N., et al.:'Pct: Point cloud 
transformer', Computational Visual Media, 2021, 7, pp.187-
199 
[18] Köhler, D., Quach, M., Ulrich, M., et al.:'Improved Multi-
Scale Grid Rendering of Point Clouds for Radar Object 
Detection Networks', arXiv preprint, 2023, 2305.15836 
[19] Liu, J., Zhao, Q., Xiong, W., et al.:'SMURF: spatial multi-
representation fusion for 3d object fetection with 4d imaging 
radar', arXiv preprint, 2023, 2307.10784 
[20] Scheiner, N., Kraus, F., Appenrodt., et al.:'Object 
detection for automotive radar point clouds–a comparison', AI 
Perspectives, 2021, 3(1), pp.1-23 


	3.1 Point Cloud Extraction
	3.2 Feature Extraction
	3.2 Attention Module for Intensity Features
	3.3 Radar PointNet
	3.4 Focal Loss
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experiment Settings
	5.1 Comparison of Classifiers
	5.2 Point Detection Methods
	5.3 Feature Importance
	5.4 Effect of SNR-based Attention

