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Abstract 

Radar-based human activity recognition has been extensively studied using deep learning models. To better suit embedded 
devices, it is essential to design models that are small in size and computationally efficient. This research paper presents a 
lightweight model architecture specifically tailored for processing radar micro-Doppler spectrograms. The key contributions of 
this work include the introduction of a lightweight front-end that employs symmetric depthwise convolution and spectral pooling 
to enhance features and perform temporal downsampling. In our encoder design, we treat the spectrogram as a multidimensional 
temporal sequence and exclusively utilize 1D convolution in our model. Additionally, the paper introduces a two-branch 
temporal modeling module: one branch utilizes attentional LSTM to extract and summarize temporal features, while the other 
employs a 1D FCN to aggregate features along the temporal dimension. Furthermore, the paper applies ranking constraints to 
the output of the attentional LSTM, effectively leveraging temporal order information. Experimental results conducted on three 
HAR datasets validate the effectiveness of the proposed model, with significant performance improvements attributed to the 
spectral pooling layer. This highlights the importance of addressing temporal redundancy in spectrograms for improved 
recognition accuracy. The code is available at https://github.com/ZHOUYI1023/ConvLSTM-for-RadarHAR.

1 Introduction 

Human activity recognition (HAR) involves the task of 
identifying and categorizing human actions and behaviors 
using data from various sources, such as camera, LiDAR, radar 
and Wi-Fi. As the development of CMOS techniques and 
antenna-in-package (AiP) technology, radar sensors achieve 
low-cost and highly integrated, making them widely utilized 
in IoT applications. However, low-cost radar sensors with 
small apertures often face limitations in angular resolution, 
which can restrict their ability to accurately reconstruct human 
motion. Nonetheless, radar sensors can measure the 
superimposed Doppler velocity of different parts of the human 
body. This spatial-temporal variation in the Doppler pattern 
serves as a unique motion signature for the activities of interest. 
To extract this motion signature, the time-frequency analysis 
techniques, such as short time Fourier transform (STFT), are 
applied. The output of this analysis is referred to as a micro-
Doppler spectrogram.  

The micro-Doppler spectrogram of human activities exhibits 
specific characteristics. For example, the moving torso 
typically exhibits a narrow low-frequency band, while the 
limbs in motion produce wider Doppler spreads and higher 
frequencies. Limbs with smaller scattering areas tend to have 

weaker high-frequency components compared to the torso. 
Furthermore, the motion is time-dependent, and oscillating 
limbs introduce periodic motion patterns. Traditional methods 
involve extracting hand-crafted features, such as Doppler 
bandwidth and temporal period, to train machine learning 
classifiers. With the advent of deep learning, neural network 
models have become a more effective approach for classifying 
these spectrograms [1]. 

There are two distinct approaches to handling the radar 
spectrogram. The first approach treats the spectrogram as an 
M × N image and utilizes CNNs for processing. However, due 
to the small dataset size and the sparsity of the micro-Doppler 
spectrogram, 2D convolutional networks often rely 
excessively on local patterns and are prone to overfitting 
background cells. The second approach views the spectrogram 
as a multi-dimensional time series with M frames of N-
dimensional Doppler features. This approach involves two 
main components: the feature encoder and temporal modeling. 
The feature encoder typically employs 1D convolutions that 
slide along the temporal dimension, and then frame-wise 
feature vectors are aggregated in the temporal modeling 
module The temporal summarization approaches include 
LSTM-FCN [2] and temporal feature pooling [3]. However, 
the performance of this second paradigm is comparatively 
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weaker. This can be attributed to two factors: the limited 
capacity of the model, which makes it less robust to noisy input, 
and the challenge of modeling temporal dynamics over long 
sequences. 

To address these issues, we improve the classical Conv1D-
LSTM framework in two key ways. First, we propose a 
lightweight feature enhancement front end to effectively 
improve the Signal-to-Noise Ratio (SNR) of the input and 
reduce temporal redundancy. In the temporal modeling 
module, we introduce a rank loss to encourage the LSTM to 
better capture motion dynamics rather than overfitting to local 
patterns. The contributions can be summarized as follows: 

• We propose a light-weight front-end comprising 
symmetric depthwise convolution and spectral pooling for 
feature enhancement and temporal downsampling. 

• We design a two-branch temporal modelling module. One 
branch utilizes an attentional LSTM to extract and 
summarize the temporal features, and the other employs 
1D FCN to aggregate features over the temporal 
dimension. We further apply ranking constraints to the 
representation extracted by the attentional LSTM to 
effectively leverage temporal order information. 

• Our experimental results on three HAR datasets confirm 
the effectiveness of our proposed model. The performance 
improvements resulting from the spectral pooling layer 
underscore the significance of addressing temporal 
redundancy in the spectrogram. 

The remaining sections of this article are organized as follows: 
Section 2 provides an introduction to related works. Section 3 
provides a detailed explanation of the proposed network.  
Section 4 offers a description of the datasets for benchmarking. 
The experimental results and analysis are presented in Section 
5. Finally, Section 6 serves as the conclusion of this paper. 

2 Related Works 

As radar sensors find applications in IoT devices, there is a 
growing emphasis on developing lightweight model 
architectures due to the constraints of power consumption and 
cost sensitivity. These approaches explore various data 
representations, focusing on innovations such as attention 
mechanisms and feature enhancement modules. Zhu et al.[4] 
utilize the micro-Doppler spectrogram as input and use 
depthwise convolution to extract channel-wise features, along 
with pointwise convolutions to summarize features from each 
Doppler channel. Lai et al. [5] construct a two-branch module 
with 1D Convolution and attention mechanisms. This module 

is designed to extract two 1D features, one along the time axis 
and the other along the frequency axis of the spectrogram. The 
extracted features are then expanded to recover the input size, 
added together, and subjected to a softmax operation to 
generate an attention map. Ding et al. [6] take a different 
paradigm, extracting sparse point clouds from the micro-
Doppler spectrogram as input and employing the PointNet 
model for classification. Ding et al. [7] consider the use of the 
3D range-Doppler-time tensor as input data.  Their method 
incorporates spatial attention mechanisms to enhance features 
in the range-Doppler dimension, utilizes conv-LSTM to 
extract frame-wise features, and employs temporal attention 
mechanisms to enhance temporal features. Yang et al. [8] 
extract two kinds of Doppler information from the Range-
Time map: microscopic Doppler, estimated using Gaussian 
kernel estimation, and macroscopic Doppler, consisting of 
trajectories of peaks fitted using Lagrangian trajectory 
estimation. They construct a lightweight model using a 
combination of MobileNet and MobileViT modules for 
classification. 

3 Methodology 

Our proposed model, depicted in Figure 3.1, comprises three 
main components: the feature enhancement front-end, the 
frame-wise feature extractor, and the temporal aggregation 
module. The feature enhancement front-end is divided into two 
parts. Firstly, it includes a lightweight convolution layer that 
utilizes 1D depthwise convolution and symmetrically shared 
weights to enhance features in a learnable manner. Secondly, 
there is a spectral pooling layer responsible for downsampling 
the input with minimal information loss. Subsequently, the 
feature extractor employs two layers of 1D convolution to 
extract frame-wise features while preserving temporal order 
information. Finally, the frame-wise features are sent to the 
temporal aggregation module, which consists of two branches. 
The first branch employs a 1D FCN to summarize the temporal 
features, while the second branch utilizes an attentional LSTM 
to model temporal relationships and summarize temporal 
features. The features from both branches are concatenated and 
passed to the classification head. It's worth noting that we 
impose a ranking constraint to ensure the final representation 
encodes temporal order information effectively. 

3.1 Feature Enhancement Front-End 
Large-capacity neural networks are prone to overfitting noisy 
patterns, making feature enhancement crucial in radar HAR 
tasks. The core idea involves mitigating redundant or noisy 
information while highlighting critical patterns within the 

 
Figure 3.1 Our proposed model architecture 
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signal. Instead of employing hand-crafted front ends, we 
propose a lightweight front-end with minimal parameters. Our 
feature enhancement front-end serves two primary functions: 
firstly, we utilize a symmetric depthwise convolution layer to 
enhance important features, and secondly, we incorporate a 
spectral pooling layer to reduce temporal redundancy while 
preserving essential information. The result of this front-end 
processing is an enhanced input data with downsampled 
temporal dimension. 

3.1.1 Symmetric Convolution: To enhance critical patterns and 
avoid overfitting, we design a lightweight front-end with very 
few parameters. When considering an input size of D×T, 
where D represents the size of the Doppler channel, and T 
represents the temporal length, popular feature enhancement 
methods such as the self-attention module can be 
computationally intensive for long sequences, with a 
complexity of 𝑂𝑂(𝑇𝑇2𝐷𝐷) . However, for front-end modules, 
heavy computations should be avoided. In this work, we 
propose a light-weight module based on symmetric depthwise 
convolution. We firstly use 1D depthwise convolution to 
efficiently extract Doppler-channel-wise information. As 
shown in Figure 3.2 (a), depthwise convolution uses a 1 × 𝑐𝑐 
filter sliding along temporal dimension for each Doppler 
channel to extract channel-wise features. For output cells at 
frequency index 𝑓𝑓 and temporal index 𝑡𝑡, the operation can be 
represented as 

 𝑋𝑋′(𝑡𝑡, 𝑓𝑓) = 𝑤𝑤𝑓𝑓 ∗ 𝑋𝑋(𝑡𝑡, 𝑓𝑓) (3.1) 

where 𝑤𝑤𝑓𝑓 is a normalized weight with size of 1 × 𝑐𝑐 , where in 
our case, c is set to 3. These weights are trainable and undergo 
normalization across the temporal dimension through a 
softmax operation. 

Given the symmetric characteristics of the micro-Doppler 
spectrogram in the Doppler dimension, we further propose a 
symmetric weight-sharing mechanism to reduce the model 
size. As depicted in Figure 3.2 (b), we group every two 
symmetric Doppler channels around the zero Doppler axis and 
assign them the same filter. This grouping strategy effectively 
reduces the number of parameters by a factor of 𝐷𝐷/2 , 
contributing to a more compact layer. 

 
(a)                                  (b) 

Figure 3.2 Symmetric depthwise convolution 

3.1.2 Spectral Pooling: For the audio spectrogram 
classification task, recent findings [9] suggests that 
downsampling along the temporal dimension has a negligible 
impact on performance. Similarly, to address the issue of 
temporal redundancy within radar spectrograms and reduce 
computational complexity, we employ spectral pooling [10] as 

a method of adaptive downsampling along the temporal 
dimension. 
The approach begins by applying the Discrete Hartley 
Transform (DHT) [11] along the temporal dimension, 
resulting in a frequency representation denoted as 

 𝑌𝑌 = DHT(𝑋𝑋) ∈ 𝐶𝐶𝑇𝑇×𝐹𝐹 (3.2) 

The DHT is a Fourier-related transform of discrete, periodic 
data, similar to the discrete Fourier transform (DFT). The 
difference is DHT transforms real inputs to real outputs 
without involving complex numbers, simplifying gradient 
computation in pytorch framework. Subsequently, a low-pass 
filter is applied to remove high-frequency components, 
yielding 𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝑘𝑘𝑘𝑘×𝐹𝐹 , where 𝑘𝑘  is the compression factor. 
Finally, we perform the inverse DHT to transform the data 
back to the temporal domain, resulting in the downsampled 
input as 

 𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = IDHT�𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ∈ 𝑅𝑅𝑘𝑘𝑘𝑘×𝐹𝐹 (3.3) 

Since the DHT can be considered as a linear mapping, the 
backpropagation process can be directly derived. Compared to 
other pooling methods, spectral pooling has advantages of 
information preservation and interpretability. The degree of 
information loss can be quantified by the Parseval’s Theorem, 
which establishes a connection between the energy loss in 
spatial and frequency domains. Furthermore, spectral pooling 
exhibits the capability to accommodate inputs of arbitrary 
sizes while generating fixed-sized outputs, effectively 
decoupling input size from the model architecture. In our 
model design, we place the spectral pooling layer after the 
symmetric depthwise convolution layer. This configuration 
ensures that feature enhancement operates at a finer resolution, 
with downsampling carried out afterward to effectively 
eliminate unimportant information along the temporal 
dimension. 

3.2 Frame-wise Feature Extraction 
In the next step, we employ 1D convolution to extract frame-
wise features from the enhanced spectrogram. Unlike 2D 
convolution, which slides over both time and frequency 
dimensions, 1D convolution utilizes a set of convolutional 
kernels with a size of 𝐷𝐷 × 𝑊𝑊, where D is the length of Doppler 
channel, and W is the kernel width. These kernels slide along 
the temporal dimension, effectively preserving the temporal 
resolution. Several reasons support the choice of 1D 
convolution for the spectrogram data. Firstly, 2D convolution 
breaks down the temporal relationship by extracting 
translational-invariant features, potentially leading to 
overfitting to local patterns regardless of their position in the 
spectrogram. However, for micro-Doppler spectrograms, the 
temporal order of the motion pattern can be important for 
classifying an activity. Secondly, given the sparsity of radar 
data, 2D convolutions often convolve with background cells, 
resulting in unnecessary computational costs. Moreover, the 
receptive field of 2D convolution is usually limited in size, 
requiring a deep hierarchical design to enhance the receptive 
field, consequently increasing the model's size and complexity. 

Sliding Direction

1D Conv

Time Dimension

Shared 
Weights

D
op

pl
er

Time Dimension



4 
 

In our model, we design a two-layer convolutional architecture 
for feature extraction. Each layer comprises 1D convolution, 
followed by batch normalization and ReLU activation.  The 
first convolutional layer involves 32 kernels with a kernel size 
of 5 and a stride of 1, followed by max pooling with a kernel 
size of 2 to halve the size. The subsequent convolutional layer 
increases the number of channels from 32 to 64 using kernels 
with a size of 3 and a stride of 1.  Our experiments indicate that 
this two-layer architecture is sufficient to achieve strong 
performance. 

3.3 Temporal Modelling 

In the feature extractor, we obtain frame-wise information 
using 1D convolution with a small fixed temporal context. For 
the activity classification task, it's essential to aggregate these 
frame-wise features to summarize the sequential information 
effectively. In our model design, we adopt a two-branch 
architecture for temporal feature aggregation.  

3.3.1 Attentional LSTM Branch: The LSTM serves as an 
effective way for modelling the temporal relationship between 
frames. The meaningful sequential representations are 
extracted as hidden features while the unimportant information 
is forgotten. In contrast to directly using the last hidden vector 
to represent the sequence, we employ an attention mechanism 
to summarize all the hidden features. This attention module 
dynamically assigns weights to different hidden states and then 
sum all the weighted features. This mechanism allows the 
model to selectively focus on the most relevant elements, 
effectively enhancing its ability to handle long sequences and 
capture complex motion patterns. Given an input feature 
sequence  𝐹𝐹 =  (𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑇𝑇) , where 𝑇𝑇  is the length of the 
input sequence. The attentional LSTM computes the sequence 
feature 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 as following: 

 𝑒𝑒𝑡𝑡 = softmax(𝑊𝑊𝑎𝑎 tanh(𝑊𝑊𝑥𝑥𝐹𝐹 + 𝑊𝑊ℎℎ𝑡𝑡−1)) (3.4) 

 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑒𝑒𝑡𝑡,𝑖𝑖ℎ𝑖𝑖𝑇𝑇
𝑖𝑖=1    (3.5) 

where ℎ𝑖𝑖  is the hidden state, 𝑊𝑊𝑎𝑎 , 𝑊𝑊𝑥𝑥 , and 𝑊𝑊ℎ  are learnable 
weight matrices and 𝑒𝑒𝑡𝑡,𝑖𝑖 represents the attention weights. 

3.3.2 Ranking Constraints: In the context of attentional-LSTM, 
a potential issue arises from the loss of temporal ordering 
information in the final sequential representation due to the 
weighted sum operations. This loss of temporal information 
can be problematic when classifying complex motion patterns 
like swimming styles. To address this challenge, we draw 
inspiration from previous work and apply ranking constraints 
to the sequence feature. The notation of ranking constraints 
comes from the convex optimization [12] and is adopted in 
video understanding [13,14].  As shown in Figure 3.3, the 
intuition is to find a direction in which the frame-wise features 
exhibit an ordered structure.  Constraining the rank 
of a feasible solution can be thought of as introducing a linear 
objective function whose normal opposes the direction of 
search. In our cases, we relax the condition by regulating the 
angle between feature vectors with a margin. Since in high 
dimensional space the angle between vectors is hard to 
determine, we employ feature smoothing by calculating the 

cumulative sum of vector elements along the time dimension 
and dividing it by the corresponding accumulated time steps. 
Given the smoothed features, we introduce an additional 
ranked loss as 

 ranked loss = minθ ∑ softplus(ζ𝑡𝑡)𝑡𝑡   (3.6) 

 ζ𝑡𝑡 = �𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑓𝑓𝑡𝑡−1� + β − 〈𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑓𝑓𝑡𝑡〉 (3.7) 

where 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠  denotes the sequence feature output from the 
attentional-LSTM and 𝑓𝑓𝑡𝑡  is the smoothed hidden feature at 
frame 𝑡𝑡, β indicates the margin, ⟨ ⟩ denotes the inner product 
operator. During the training, this ranked loss is added to the 
cross entropy loss with a predetermined weight. 

 
Figure 3.3 Ranking constraint (adapted from [12]) 

3.3.3 FCN Branch: In additional to LSTM for modelling the 
sequential dependencies, similar to [2], we adopt an FCN 
branch to summarize the temporal features over the channel 
dimension. Firstly, we transpose the temporal features so that 
the 1D convolution can slide along the channel dimension. The 
FCN module consists of two 1D convolution layers with filter 
sizes of 8 and 64. Subsequently, the feature map is converted 
into a global feature vector through global average max 
pooling. This global feature vector is then concatenated with 
the sequence feature extracted from the attentional LSTM. 
Finally, the concatenated feature is fed into a fully connected 
layer for classification. 
4 Datasets and Experiment Settings 

A significant challenge in evaluating these methods lies in the 
absence of publicly available benchmarks for comparing 
algorithms. Each method is assessed and compared using self-
collected datasets with varying levels of difficulty. 
Additionally, the quality of the spectrogram is influenced by 
both the radar sensor used and the signal processing pipeline 
employed. In this work, we aim to address this challenge by 
benchmarking models on three different public datasets that 
provide raw data. We also unify the signal processing pipeline 
to minimize the impact of signal processing on the evaluation. 

4.1 Datasets 
Three datasets are chosen for benchmarking. The first is the 
Glasgow indoor HAR dataset [15], which employs a 5.8 GHz 
FMCW radar featuring a 400 MHz bandwidth and 1 ms chirp 
duration. The dataset consists of recordings from 20 volunteers 
performing six different activities: walking, sitting down, 
standing up, picking up an object, drinking water, and falling. 
Each activity class comprises 300 data instances, and each data 
instance lasts for 10 seconds.  
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The second dataset [16] also aims at indoor HAR. The datasets 
provide three sensors, including UWB radar, 24 GHz radar and 
77 GHz radar. In this project, we only use the data recorded by 
the 77GHz radar. The radar is a 77GHz radar with 0.7675 GHz 
bandwidth and 0.3125 ms chirp duration. Compared to the first 
one. This dataset covers 11 classes of activities, including 
walking towards radar, walking away from radar, picking up 
an object, bending, sitting, kneelling, crawling, walking on 
both ties, limping with stiff, short steps and scissors gait. The 
walking direction and some similar activities are considered. 
Each participant conducted 10 repetitions of each activity, 
resulting in a total of 60 samples per class per sensor. 

The third dataset [17] focuses on aquatic human activity 
recognition. It employs a 77 GHz FMCW radar with a 1.7 GHz 
bandwidth and 0.33 ms chirp duration. Nine-class aquatic 
human activities: struggle, drowning, float with buoys, wave 
for help, pull buoys, swim with buoys, backstroke, 
breaststroke and freestyle are recorded for a consecutive 20 or 
40 seconds for each recorded sequence. A 128-point Doppler 
FFT along slow time is applied in signal processing to obtain 
TD maps. Utilizing a small frame length of 20 with a 0.5 
overlap, each class of activity consists of approximately 600 
data instances. Notably, swimming activities exhibit variable 
and prolonged periods, making it highly probable to 
encompass incomplete motion patterns within a data instance. 
Also, submerged bodies lead to weaker reflected energy, 
further complicating the task of accurately discriminating 
different activities. 

Table 1 Radar Configurations 

Model Glasgow CI4R Aquatic 
Operating Frequency 5.8 GHz 

0.4 GHz 
1 ms 
128 
128 

77 Ghz 77 Ghz 
Bandwidth 0.77 GHz 1.7 GHz 
Chirp Time 0.3125 ms 0.33 ms 
# ADC per Chirp 256 256 
# Chirp per Frame 256 128 

4.2 Unified Signal Processing 
To mitigate the effects of the signal processing pipeline, we 
standardize the pipeline to process these datasets. We retain 
only one channel from the raw ADC data, without considering 
the angle information. We conduct a 256-point FFT along the 
range dimension, followed by a 4th order Butterworth filter for 
MTI processing. Finally, we conduct STFT with a 128-point 
window size, spanning 128 samples, and an overlap ratio of 
0.95 along the Doppler dimension to extract the micro-Doppler 
spectrogram. Some studies save the micro-Doppler as a color 
image by applying a cutoff filter to the log-spectrogram and 
mapping the intensity to RGB space using a color map. 
However, we argue that saving the spectrogram as an RGB 
image is an unnecessary process that leads to information loss. 
Instead, we directly encode the log-spectrogram into a 
normalized map. The color map is only used for visualization. 

4.3 Experiment Settings 

Our approach utilizes raw micro-Doppler spectrograms as 
inputs and performs input normalization using precomputed 

mean and standard deviation values derived from all training 
samples. In addition to the proposed model, our evaluation 
includes four additional architectures: two CNN models, 
including a light-weight VGG [18] and ResNet-18 [19]; two 
LSTM-based models, including CRNN [20] and plain 
Conv1D-LSTM [21]. The optimization process employs the 
Adam optimizer with a learning rate of either 1e-3 or 1e-4. To 
adaptively adjust the learning rate when the validation loss 
plateaus, we utilize the ReduceLROnPlateau scheduler to 
enhance convergence. We split the dataset into 80% training 
and 20% testing sets. Due to the small size of the first two 
datasets, we apply ten-fold cross-validation to better utilize the 
available training data. The selection of the best model is 
determined by monitoring the validation loss, and we 
incorporate early stopping with a patience of 5 epochs, 
meaning that training halts if the validation loss does not 
improve within this specified time window. 

5 Result Analysis 

5.1 Classification Performance 
In Table 2, we present the classification results for three 
selected datasets. The table reveals that our model achieves the 
best performance in the aquatic HAR dataset and the second-
best result in the CI4R dataset. All the models perform 
comparably in the Glasgow HAR dataset, suggesting that this 
dataset may be too simple to provide a fair evaluation of model 
performance. Notably, the CNN models exhibit significantly 
lower accuracy in the CI4R dataset, which is a small dataset 
with many classes. This suggests that CNN models are prone 
to overfitting in such cases, while the LSTM models 
demonstrate markedly improved performance. In contrast, for 
the aquatic HAR dataset with its complex motion patterns, the 
CNN models outperform the LSTM models. Importantly, our 
proposed models offer significantly enhanced efficiency while 
maintaining comparable accuracy in this dataset compared to 
the CNN models, all while having fewer parameters and 
FLOPs. 
 
Table 2 Classification Performance 

Model Accuracy (%) Params 
(G) 

FLOPs 
(M) GLA CI4R AQUA 

CRNN 94.53 90.28 82.46 0.415 0.896 
VGG7 93.49 76.84 85.56 2.095 0.298 
ResNet18 95.83 78.25 88.73 1.824 11.180 
ConvLSTM 94.53 86.33 80.31 0.008 0.111 
Our Model 93.49 89.57 88.67 0.010 0.127 

 
In Figure 5.1, we further inspect the class-wise performance 
using confusion matrices. In the first plot, we observe that 
although "drink" and "sit" activities can be occasionally 
confused, our model successfully classifies all the other 
activities with high accuracy. In the second plot, we notice that 
distinguishing between "picking up" and "bending" poses a 
challenge, and different types of walking activities, such as 
"walking towards radar" and "short steps," are prone to being 
misclassified into other walking types. Finally, in the third plot 
for the aquatic dataset, we find that "pull buoy" and "swim 
with buoy" activities are challenging to discriminate, while the 
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model performs well with the other activities. Notably, 
different swimming styles are successfully distinguished from 
each other, showcasing the model's effectiveness in handling 
intricate patterns in aquatic activities. 

 
Figure 5.1 Confusion matrices 

5.2 Ablation Study 
In Table 3, we present the results of our ablation study. The 
symmetric depthwise convolution layer exhibits slight 
improvements on the latter two datasets while minimizing the 
increase in model size and computation. Since the design of 
encoder layers has been extensively discussed in [20], our 
focus here is on investigating the impact of the temporal 
modeling module. From the results, it becomes evident that 
removing the LSTM module and relying solely on the FCN 
module for sequence summarization leads to significant 
performance degradation. Specifically, we observe a 5.99% 
drop on the Glasgow dataset, an 8.67% drop on the CI4R 
dataset, and an 8.59% drop on the aquatic dataset, 
underscoring the importance of temporal modelling. If we 
remove the FCN branch, we witness a 5.21% performance 
drop on the CI4R dataset and a 2.73% drop on the aquatic 
dataset. Replacing the FCN with a nonparametric max-pooling 
layer results in a 2.73% performance decrease on the aquatic 
dataset, with minimal impact on the other two datasets. This 
reaffirms the crucial role of our two-branch design in 
aggregating temporal features. The FCN module appears to be 
particularly effective for complex motion patterns due to its 
increased model capacity. When we remove the attention 
mechanism and use the last hidden feature as the output, we 
observe a substantial 10.27% performance drop on the CI4R 
dataset, highlighting the significance of the attention 
mechanism for long sequence classification. Furthermore, the 
inclusion of ranking constraints contributes to performance 
improvement without increasing computation, as these 
constraints modify the training loss. 

Table 3 Ablation Study 

Model Accuracy (%) Params 
(M) 

FLOPs 
(K) GLA CI4R AQUA 

Full 93.49 89.57 88.67 10.390 126.65 
rmSymConv 95.53 88.83 87.11 10.390 126.65 
rm FCN 93.49 83.36 85.74 9.933 117.93 
FCN2Pool 96.35 89.50 85.94 9.933 118.25 
rm LSTM 
rm Attention 
rmRankLoss 

87.50 
94.53 
95.31 

80.90 
79.30 
87.23 

80.08 
86.13 
85.94 

5.470 
10.386 
10.390 

51.01 
126.59 
126.65 

5.3 Effect of the Feature Enhancement Module 
Since the ablation study does not fully reflect the importance 
of the feature enhancement module, we conduct further 
analysis through feature map visualization. In Figure 5.2(a), 
we observe that the trained weights of the depthwise kernel 
exhibit patterns such as descending and periodical motion. To 
illustrate this, we provide an example using a spectrogram of 
freestyle and display the difference map between the test 
image and the enhanced image in Figure 5.2(c). This 
visualization highlights that critical motion patterns are 
effectively enhanced by the feature enhancement module.  

Moreover, the feature enhancement module implicitly 
contributes to noise filtering due to the use of softmax. To 
assess this effect, we introduced Gaussian white noise with a 
variance of 0.1 to the test data, as depicted in Figure 5.2(d). 
The results in Figure 5.2(f) show that the enhanced image is 
less noisy, indicating the noise filtering capabilities of the 
module. 

These findings underscore the importance of the feature 
enhancement module in improving the model's ability to 
highlight critical motion patterns and reduce the impact of 
noise in radar micro-Doppler spectrograms. 

 
(a)           (b)                 (c)                  (d)                (f) 

Figure 5.2 Effect of feature enhancement 

In Figure 5.3, we present visualizations of the feature map after 
spectral pooling using different scaling factors. A consistent 
colormap is applied to emphasize the effect of SNR 
enhancement achieved by the spectral pooling layer. Upon 
visual inspection, we observe significant temporal redundancy 
in the spectrogram. 

 
(a)                      (b)                  (c)               (d) 

Figure 5.3 Visualization of spectral pooling 

Figure 5.4 displays the accuracy changes as we modify the 
temporal scaling factor. The figure suggests that increasing 
temporal compression can improve performance, possibly due 
to SNR improvements and enhanced temporal modelling 
capabilities of the LSTM with shorter sequences. If we replace 
spectral pooling with adaptive max pooling or adaptive 
average pooling, we observe a drop in performance due to 
resolution loss. These findings can inspire future research on 
more efficient temporal information compression techniques 
for HAR tasks. 
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Figure 5.4 Effect of spectral pooling 

5.3 Effect of the Ranking Constraints 
Table 3 has already demonstrated the benefits of rank 
constraints on performance. To gain a deeper understanding of 
how these constraints work, we present the learning curve in 
Figure 5.5 and employ t-SNE for feature visualization in 
Figure 5.6, using the aquatic dataset as our example. In order 
to compare the learning dynamics with and without ranking 
loss optimization, we conducted a 50-epoch training session, 
setting the weight for ranking loss to 1 and 0, respectively. 
From the learning curve, we can find the ranking loss tends to 
be consistent if left unoptimized. When optimization is applied, 
the loss experiences a constantly slight decrease. Examining 
the cross-entropy loss, we observe that the ranking loss does 
not have a significant impact during the initial epochs. 
However, as the cross-entropy loss reaches a plateau, we 
notice that optimization of the ranking loss leads to a more 
pronounced decrease in cross-entropy loss compared to the 
unoptimized scenario. 

 
Figure 5.5 Learning curve for the loss optimization 

In Figure 5.6, the t-SNE results reveal that different swimming 
styles are more effectively separated in the feature space after 
the application of ranking constraints. Given that different 
swimming styles often exhibit similar periodical energy 
distributions, the temporal order of features appears to play a 
more crucial role in classification. 

 
Figure 5.6 Feature visualization 

6 Conclusion 

In conclusion, this work introduces a lightweight model 
architecture tailored for radar micro-Doppler spectrogram 
processing. The model comprises three main components: a 
lightweight feature enhancement module, a 1D convolution 
based temporal feature extractor, and a temporal modelling 
module. The feature enhancement module consists of a 
lightweight symmetric depthwise convolution layer to 
emphasize important features and a spectral pooling layer to 
reduce temporal redundancy. Furthermore, a two-branch 
temporal modelling module is devised, utilizing an attentional 
LSTM for temporal relationship modelling and summarization, 
alongside a 1D FCN for feature aggregation over the temporal 
dimension. The incorporation of ranking constraints on the 
attentional LSTM's output effectively leverages temporal 
order information. Experimental results on three HAR datasets 
validate the model's effectiveness. 

The experimental results particularly emphasize the 
significance of addressing temporal redundancy through the 
spectral pooling layer. Future research should focus on finding 
ways to better harness this temporal redundancy to further 
reduce model size and computational costs. 
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