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Abstract—Radio communication signals are often represented
in many practical application scenarios as a spectrogram, which
indicates the power observed at several discrete time instants and
frequency points within a certain time interval and frequency
band, respectively. The concept of Signal Area (SA) was recently
introduced in the context of spectrum occupancy measurements
as the rectangular region in the time-frequency domain where
a signal is believed to be present. An accurate estimation of
the original SA for each radio transmission contained in a
spectrogram can provide valuable information in many practical
application scenarios, such as autonomous spectrum-aware wire-
less communication systems. In this context, this work proposes
new methods for an accurate Signal Area Estimation (SAE)
based on the application of the Hough Transform (HT) combined
with other techniques from the field of image processing. The
performance of the proposed methods is evaluated by means
of simulations and experiments. The obtained results show that
they can achieve a high level of SAE accuracy. Moreover, an
interesting and distinguishing feature of the proposed methods is
their ability to not only improve the accuracy of the SAE but also
to extract automatically the coordinates and dimensions of each
SA detected in a radio spectrogram. This feature can be useful
in the automatic processing of radio spectrograms, for example
in the context of autonomous spectrum-aware wireless systems.

Index Terms—Wireless communications, spectrum measure-
ments, signal area, Hough transform, image processing.

I. INTRODUCTION

The occupancy in the joint time-frequency domains of a

spectrum band used for radio communications can be conve-

niently represented by means of spectrograms. Radio spectro-

grams provide information about the power spectral density of

a signal (or a set of signals) that are present in the frequency

band of interest at regular time intervals. Spectrograms can

be processed to extract relevant information about the signals

presents in a certain band, such as for example the received

signal strength, carrier frequency, occupied bandwidth, spec-

tral mask and transmission pattern. Among the many signal

parameters that can be extracted from a spectrogram, the

interest of this work is on determining the time-frequency

region of the spectrogram that is occupied by each radio

transmission or signal component present in the spectrogram,

which has been referred to in the literature as Signal Area

(SA) [1]. A SA is a group of spectrogram points or elements

arranged in a rectangular cluster where a certain signal is

believed to be present. Each of such points or elements of

the spectrogram corresponds to a measured time slot and

frequency bin in the time and frequency domains, respectively.

The dimensions of each SA within a spectrogram indicate the

bandwidth occupied by each radio transmission as well as its

start and end times. The ability to obtain this information

from a spectrogram can be of significant utility in a broad

range of practical scenarios that include spectrum surveillance

for enforcement of spectrum regulations, gathering of signal

intelligence in military environments, signal interception and

identification, and spectral awareness for dynamic spectrum

sharing applications [1]–[3], among many others.

A number of Signal Area Estimation (SAE) methods have

been proposed in the literature based on different operat-

ing principles [1], [4]–[15]. Some popular methods include

fast Fourier transform-based energy detection (ED-FFT) [14],

Contour-Tracing (CT-SA) algorithms [11], and the so-called

Simple Signal Area (SSA) algorithm proposed in [1], [12],

[13]. In this context, this work considers a different approach

based on the application of image processing techniques to

radio spectrograms. The use of image processing methods to

the problem of SAE is motivated by the fact that the problem

of estimating a SA in a noisy spectrogram is similar to the

problem or recognising a rectangle in a noisy image. By

interpreting each radio spectrogram point (indicating a binary

occupied/empty state) as a pixel in a binary (black-and-white)

image, spectrograms can be seen as images, which enables the

application of several powerful image processing techniques

to the problem of SAE, concretely, the estimation of solid

rectangular shapes degraded by the presence of noise and radio

propagation impairments.

Several image processing techniques can be used to identify

shapes after separating them from their background (noise)

[16]. One such technique that is particularly suited to the

problem of SAE considered in this work is the Hough trans-

form (HT). The HT can be employed to recognise lines

and rectangular shapes and is therefore an appropriate tool

to identify SAs in a radio spectrogram. This paper explores

the usability of the HT in the context of SAE and proposes

two approaches that exploit the HT to estimate SAs in a

spectrogram. The main interest of the proposed methods, and a

distinguishing feature with respect to most other methods pro-

posed in the literature, is their ability to automatically extract



the parameters of each SA (i.e., the coordinates of the vertical

and horizontal lines containing each SA). Most of previously

proposed SAE methods produce enhanced spectrograms where

the present SAs can be appreciated more accurately, however

have not typically been designed to automatically provide the

coordinates and dimensions of each SA. On the other hand, the

HT-based methods proposed in this paper can provide not only

an enhanced spectrogram but also the coordinates and dimen-

sions for each of the SAs detected in such spectrogram. This

feature can be extremely useful in the automatic processing of

radio spectrograms, for instance in the context of autonomous

spectrum-aware wireless and mobile communication systems.

The rest of the paper is organised as follows. First, Section II

provides a formal description of the SAE problem considered

in this work along with an overview of SAE techniques

proposed in the existing literature. Section III provides an

overview of the basic principles of the HT and presents the

two new methods proposed in this paper. Section IV then

describes the methodology employed in this work to assess

the estimation accuracy of the proposed methods. The obtained

results are then presented and analysed in Section V. Finally,

Section VI summarises and concludes the study.

II. SIGNAL AREA ESTIMATION

A. Problem Description and Formulation

SAE methods are applied to spectrum readings based on

two-dimensional time-frequency grids of spectrum data. The

time-frequency grids consist of clustered tiles where each

element reflects the signal presence state in the corresponding

time and frequency point. In power spectrograms, each tile

represents a continuous-domain power value, which can be

mapped to a discrete-domain occupied/empty state by using

an appropriate decision threshold [17]. The appropriate con-

figuration of such decision threshold in the context of SAE

has been investigated in [18]. This binary time-frequency grid

provides the fundamental data required for SAE and is the

input information that most SAE methods need, based on

which they will attempt to estimate as accurately as possible

rectangularly-shaped regions containing adjacent tiles in the

occupied state. Each of such regions is referred to as a Signal

Area (SA) and it univocally identifies the occupied band-

width and duration of each radio transmission. Notice that,

by definition, most wireless communication signals should

produce a rectangularly-shaped SA – or a set of rectangular

SAs in the case of certain particular signal formats (e.g.,

frequency hopping signals). However, due to the degradation

introduced by the presence of noise and the radio propagation

channel, the SAs present in the spectrogram observed at the

radio receiver will not necessarily have a perfectly rectangular

solid shape. The purpose of SAE methods is to attempt

to reconstruct the original rectangular SAs produced by the

transmitter activity based on the imperfect/degraded version

observed at the receiver.

The detection and estimation of SAs in a real radio spectro-

gram is accompanied by a set of limitations that resemble those

of the classical signal detection process [19]. The accuracy of

SAE depends on the occurrence of the same types of signal

detection errors, namely missed detections and false alarms,

which are common errors in signal detection procedures where

busy and idle tiles may be detected in their opposite states.

Missed detections and false alarms compromise the shape of

the observed SAs and interfere with the operation of SAE

methods. However, it is worth noting that the ultimate purpose

of SAE methods is different from that of signal detection

techniques. Signal detection techniques are aimed at accurately

detecting the instantaneous presence of a signal in a certain

frequency band and therefore it is important to produce an

accurate detection in every time-frequency tile. However, on

the other hand, SAE is concerned with an accurate estimation

of the overall SA but certainly pays minimal attention to the

accuracy of individual tiles as long as the overall SA can be

estimated accurately. This is because the aim of SAE methods

is to establish the time-frequency region occupied by each

SA rather than the customary instantaneous signal presence in

each time-frequency point of the spectrum. Moreover, signal

detection methods are usually aimed at providing real-time

decisions on the instantaneous (current) spectrum occupancy

state, while SAE methods are usually not envisaged to be

applied in real-time (which would certainly be not possible

due to the time span needed to capture the amount of data re-

quired to complete a spectrogram). SAE methods are typically

employed for offline processing of spectrum occupancy data

and its characterisation in the longer-term.

B. Existing SAE Methods

A number of methods have been proposed in the literature

to estimate accurately the SAs present in a radio spectro-

gram based on the (degraded) signal power data observed

at the receiver [1], [4]–[15]. Some popular methods include

fast Fourier transform-based energy detection (ED-FFT) [14],

Contour-Tracing (CT-SA) algorithms [11], and the so-called

Simple Signal Area (SSA) algorithm proposed in [1], [12],

[13]. A popular approach that has been usually employed is

ED-FFT [14] given its simplicity and low computational cost.

This approach simply determines the busy or idle state of

every point/tile in the time-frequency domain using a tile-by-

tile ED-FFT [20]. ED-FFT methods are simple and convenient

but do not necessarily produce a rectangular estimation for

each SA, thus they tend to be more inaccurate. In any case,

ED-FFT can be used as a useful baseline for reference to

compare with other SAE methods including the new methods

proposed in this work. A more evolved approach is CT-SA,

where a rectangular SA is approximated by using contour

tracing techniques [11]. A more powerful and accurate SAE

method is the SSA algorithm proposed in [1], [12], [13],

which is a sophisticated method of estimating the SA in the

time-frequency domain in a series of steps. The steps in SSA

include raster scan to detect the first corner of a potential

SA, horizontal scan to evaluate the width of the SA, a coarse

estimation of the SA height and finally a fine height estimation

procedure to determine the approximate total dimensions of

the SA. More recently, a Minesweeper Algorithm (MA) has



been proposed in [15], which decides the state of each tile

based on its own state and the states of neighbouring tiles.

The MA method is heuristic and does not necessarily produce

a rectangular SA either but it has been proven to provide

significant accuracy improvements when combined with the

CT-SA and SSA methods as a pre/post-processing technique.

III. SIGNAL AREA ESTIMATION BASED ON THE HOUGH

TRANSFORM

A. Motivation

The problem of SAE in a time-frequency grid of discrete

occupied/empty elements (obtained by appropriately thresh-

olding a spectrogram of continuous-power values) is similar

to the problem or recognising a rectangular shape in a noisy

binary image. By interpreting each radio spectrogram point

(indicating a binary occupied/empty state) as a pixel in a

binary (black-and-white) image, spectrograms can be seen as

images, which enables the application of several powerful im-

age processing techniques to the problem of SAE, concretely,

the estimation of solid rectangular shapes degraded by the

presence of noise and radio propagation impairments. This

point of view motivates the exploration of powerful tools from

the field of Image Processing in the context of SAE. Image

Processing is a well-developed field that counts with advanced

and sophisticated techniques to detect shapes in noisy images.

One such technique that is particularly suited to the problem

of SAE considered in this work is the Hough transform (HT).

The HT can be employed to recognise lines and rectangular

shapes and is therefore an appropriate tool to identify SAs in

a radio spectrogram [21]. This paper explores the usability of

the HT in the context of SAE and proposes two approaches

that exploit the HT to estimate SAs in a spectrogram.

B. Overview of the Hough Transform

The HT is a feature extraction technique whose purpose is

to identify imperfect instances of objects in an image. The HT

originated from the basic need to detect certain shapes inside

arbitrary images corrupted by noise and other artefacts. In its

most basic definition, the classical HT was concerned with

the identification of lines in an image, while the generalised

HT was later on introduced to enable the detection of more

complex arbitrary shapes such as circles or ellipses and their

positions within images. Notice that SAs are by definition

rectangularly shaped and therefore are delimited by four lines

corresponding to the edges of the SA. Such straight lines can

be detected with a classical HT and therefore the interest of

this work lies on the classical HT [22], [23].

The HT detects imperfect instances of a certain shape (in

the case concerned in this work, straight lines) based on a

voting procedure carried out over parametised image objects.

Basically, each possible candidate shape (line) is represented

according to a given parameter space and then all possible

candidates are tested by assessing how closely they match

with the pixels of the image. The best fitting candidate is then

selected by means of a voting procedure. Lines are typically

represented in a Cartesian x-y space in the form y = mx+n,

x

y

r

q

Fig. 1: Parameter space for the Hough transform.

where m is the slope of the line and n its displacement

with respect to the origin. Thus, in a Cartesian space each

line can be represented as a point (m,n) in the parameter

space. This parameter space, however, has the inconvenience

that vertical lines would give rise to unbounded values of the

slope parameter (m → ∞), which would pose computational

problems. For this reason, the HT is carried out over a Hessian

normal form ρ = x cos θ+y sin θ, where ρ is the distance from

the origin to the closest point on the straight line and θ is the

angle between the abscissas axis and the line connecting the

origin with that closest point, as illustrated in Fig. 1. In this

parameter space, each line is represented as a point (ρ, θ).
The result of the HT is a matrix whose elements are used

as accumulators indicating the frequency of occurrence of the

potential lines observed for each pair (ρ, θ). In the context of

SAE, the SAs can be assumed to be aligned with the x-y axes

of the Cartesian space and therefore each SA can be assumed

to be delimited by two pairs of mutually parallel lines, a pair

of vertical lines (θ = 0) and another pair of horizontal lines

(θ = π/2). The abscissas (x) coordinates of vertical lines are

then obtained as the value of ρ in the HT for θ = 0, while

the ordinates (y) coordinates of horizontal lines are obtained

as the value of ρ in the HT for θ = π/2 as illustrated in Figs.

2 and 3. As a result, the HT can automatically provide the

coordinates of the lines that correspond to the edges of each

SA. Having the coordinates of the lines that delimit the SAs

in a radio spectrogram, it is possible to extract the coordinates

and dimensions for each individual SA in a radio spectrogram.

This is a significant advantage of HT-based SAE compared to

most existing SAE methods, many of which have not been

specifically designed to obtain this information (despite of its

importance in practical applications) in an automated manner

(i.e., without human manual intervention).

C. Proposed HT-based SAE methods

The proposed SAE methods, similar to many other SAE

methods, are based on the processing of binary spectrograms

where each spectrogram point contains a binary value indi-

cating whether a signal component is believed to be present

or not. Such spectrogram can be obtained by thresholding a

continuous-domain power spectrogram. The configuration of

such threshold as well as the resolution of the spectrogram can

have a significant impact on the performance of SAE methods.
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Fig. 2: HT example with 1 SA: (a) spectrogram, (b) HT.
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Fig. 3: HT example with 3 SAs: (a) spectrogram, (b) HT.

These aspects are out of the scope of this work but a detailed

analysis and discussion can be found in [18].

The examples shown in Figs. 2 and 3 correspond to ideal

cases where a perfect SA is observed without any degradation.

In a real radio spectrogram obtained from actual empirical

measurements there will be artefacts in the image in the form

of false alarms (introduced by the noise present at the radio

receiver) and missed detections (caused by radio propagation

impairments). Missed detections will in general not be a source

of major concerns since they will often occur inside SAs and

therefore will be surrounded by other points in occupied/busy

state that will help detect the SA. However, false alarms

can lead to significant detection performance degradation (the

same effect was also observed and discussed in [1] in the

context of SAE). False alarms are particularly problematic in

the application of the HT because each false alarm point will

be processed by the HT algorithm by trying to identify lines

that pass through that point. A large number of false alarms

may therefore have a significant impact on the HT output.

To address this problem, a false alarm reduction step is first

applied by convolving the input binary image with a 3 × 3

filter whose template is composed of all ones. The busy points

with an output value lower than or equal to two (i.e., isolated

points not surrounded by a significant number of other busy

points) are deemed to be false alarms rather than true SA

points and therefore discarded (their value is inverted to the

free/empty state). This process is similar to that employed by

the MA method described in [15].

After the input spectrogram has been filtered to reduce the

incidence of false alarms, the resulting cleaner image can be

more accurately processed with a HT. However, the HT is

rarely directly applied to an image. It is often a common

practice to first apply an edge detection method in order to

extract the edges of those objects present in the image. In

the case of a radio spectrogram, this edge detection step will

highlight and show more clearly the potential lines (edges

of the SAs) present in the image. In this work, the Canny

edge detector [24] is selected due to its ability to account

for image noise [25] and its higher detection performance

compared to other conventional edge detectors. Notice that

an edge detector will provide a more clear visualisation of

the lines delimiting the SAs in a spectrogram, however such

edges will be imperfect in the sense that they will usually

not be a clear and well-defined single straing line at a unique

coordinate. Instead, due to the presence of noise and radio

propagation degradation, each side of a SA will appear, not

as a single edge/line, but instead as a concatenation of several

much smaller lines randomly distributed along the true original

edge/line, with slightly different coordinates. The application

of the HT can in this case provide a more clear identification of

the single coordinate of that edge/line around which the small

fragments are detected by the edge detector, thus helping find

a unique coordinate for each edge/line delimiting each SA.

After the edge detection step, the HT is applied to extract the

coordinates of the lines delimiting the SAs in a spectrogram.

The output of the HT will contain peaks at the coordinates

that are more often observed and therefore the most likely

candidates to be the true edges of the SA. These peaks can

be extracted by setting an appropriate threshold. In this work,

this threshold is set as a percentage of the maximum value

of the HT (several thresholds will be tested in order to find

the most convenient configuration). Following the extraction

of the peaks in the HT, a clear indication of the coordinates

of the lines in the spectrogram will be obtained. However,

notice that these lines will only determine a grid of vertical

and horizontal lines over the spectrogram but will not indicate

in which of those rectangles in the grid a SA is actually

contained. To resolve this problem, the pixel density in each

rectangular region of the grid is calculated and if it is above

a properly defined threshold then a SA will be assumed to

be present. Notice that in those rectangles of the grid where

a SA is actually present, the density of busy/occupied pixels

will be higher than in those other rectangles placed within

SAs, where no signal components should be present (except

for some random false alarms). Following this procedure, it is

possible to identify the rectangles where a SA is present and

therefore extract the coordinates and dimensions of each SA

in the spectrogram.

The proposed method is applied following two different

approaches. The first approach attempts to isolate each SA

component from the spectrogram before applying the proce-

dure above. As a result, the procedure above will be applied

individually to a set of subimages, each of which contains a

single SA, which should presumably (but not necessarily) be

located in the central rectangle of the subimage. The second

approach applies the procedure above to the whole spectro-

gram, without attempting to isolate individual SA components.

As a result, the procedure above will provide together the



coordinates of all the SAs found in the spectrogram. The

complete set of steps for both approaches are detailed below.

Approach 1:

1) Filter input image to reduce incidence of false alarms.

2) Find connected components in the binary image in order

to calculate the number of objects (blobs) in the image.

3) Trace region boundaries around each object/blob ob-

tained above. These boundaries will divide the original

image/spectrogram into a number of non-overlapping

subimages/components. Each of such components will

contain a single SA that will be processed individually

repeating the steps below for each detected component.

4) In each component detected above:

a) Find edges with a Canny edge detector.

b) Apply the HT to the output of the edge detector.

c) Identify the peaks of the HT by applying a thresh-

old to the HT, which is calculated as a frac-

tion/percentage of the maximum value of the HT.

d) Identify two vertical lines and two horizontal lines.

This assumes that a single SA will be present

in the current component (assuming that region

boundaries have been properly traced in Step 3).

e) The four lines identified above will define a grid

with 9 rectangular regions, where in principle only

one of them should contain a SA. Such region

can be identified by calculating the percentage of

occupancy (i.e., percentage of busy pixels) and

comparing to a properly set occupancy threshold.

f) In the rectangular region where a SA is deemed to

be present, extract its coordinates (for its delimiting

vertical and horizontal lines) and add it to the final

output image/spectrogram.

Approach 2:

1) Filter input image to reduce incidence of false alarms.

2) Find edges with a Canny edge detector.

3) Apply the HT to the output of the edge detector.

4) Identify the peaks of the HT by applying a threshold to

the HT, which is calculated as a fraction/percentage of

the maximum value of the HT.

5) Identify all vertical lines and all horizontal lines. This

does not make any assumption on the number of SAs

present since the complete spectrogram/image is being

processed as a whole in this case.

6) The lines identified above will define a grid with an

arbitrary number of rectangular regions, any of them can

potentially contain a SA. Such regions containing a SA

can be identified by calculating the percentage of occu-

pancy (i.e., percentage of busy pixels) and comparing to

a properly set occupancy threshold.

7) In the rectangular region where a SA is deemed to be

present, extract its coordinates (for its delimiting vertical

and horizontal lines) and add it to the final output

image/spectrogram.

Both approaches are considered to determine whether the

individual processing of each region of the spectrogram can

provide any performance improvements over the whole pro-

cessing of the complete spectrogram as a single image.

IV. EVALUATION METHODOLOGY

The performance of the methods proposed in this work is

evaluated by means of Monte Carlo simulations and hardware

experiments. Simulations were performed following the same

procedure used in [15], [18]. The simulation procedure utilises

multiple random two-dimensional time-frequency binary data

grids containing channelised SAs with fixed bandwidth and

random durations. The binary spectrograms representing the

original activity of the transmitter are corrupted by introducing

both false alarms (resulting from noise) and missed detections

(resulting from propagation impairments) with predefined

probabilities. The corrupted spectrograms are then processed

with the proposed SAE methods and the output is compared to

the original spectrogram generated at the transmitter in order

to assess the accuracy of the estimated SAs. The process is

described in more detail in the steps below.

Step 1. Create clean time-frequency test grids: For each

simulated SNR, a group of 100 test grids is randomly gen-

erated with resolution of 50×100 tiles, which can be con-

sidered of medium size according to [18]. The horizontal

size (100 tiles) is the number of frequency bins while the

vertical size (50 tiles) is given by the time resolution of the

spectrum measurements. Busy/idle transmissions are randomly

drawn from exponential distributions with rate parameters

λon = λoff = 0.5 s−1 and minimum busy/idle durations

of 10 s and 5 s, respectively. A total of three frequency

channels with equal bandwidths are considered, however only

the central one is used, and guard bands of 5% of the channel

bandwidth are taken into account. The test grids generated

in this step represent the original transmission pattern of the

transmitter before the signal passes through the radio channel

and is corrupted by internal/external noise/interference and

radio propagation mechanisms. Fig. 4a shows an illustrative

example of one single channel in the test grid.

Step 2. Add errors to the test grids: Errors are added

to the clean test grids generated in Step 1, affecting both

idle tiles (via false alarms) and busy tiles (via signal missed

detections). Idle/busy tiles can randomly change to busy/idle

state with probability of false alarm Pfa / probability of

missed detection 1− Pd, respectively. These probabilities are

calculated assuming that the samples of the power spectrogram

are converted to binary idle/busy states using an ED technique

with a constant false alarm rate Pfa = 0.01 and an SNR-

dependent detection probability Pd [18, eqs. (1)-(2)]. The test

grids generated in this step represent the pattern observed by

the receiver after the target signals have propagated through

the radio channel and have been degraded by propagation and

internal/external noise/interference. Fig. 4b shows how the test

grid of Fig. 4a is observed at the receiver after the application

of ED with a decision threshold calculated for Pfa = 0.01
and a receiving SNR of –5 dB, for which Pd ≈ 0.49.

Step 3. Estimate the SAs: This step involves the application

of a SAE method to the (corrupted) noisy test grids obtained
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Fig. 4: Example of a randomly generated time/frequency test grid:
(a) Clean test grid, (b) Test grid with noise (SNR = –5 dB).

in Step 2 in order to estimate the SAs present in the clean test

grid. In this step, the proposed SAE methods based on the HT

are employed. The ED, CT-SA and SSA methods discussed in

Section II-B are also simulated in this work in order to provide

a point of reference to which the performance of the proposed

methods is compared. The ED method has been selected as

a basic reference, even though it cannot actually provide an

estimation of the SAs present in an spectrogram. The CT-SA

and SSA methods, which are specifically designed to detect

SAs, have been selected for comparison because these methods

can provide an automated estimation of the coordinates and

dimensions of each SA and therefore provide a good reference

for a fair comparison (as opposed to other SAE methods

that are unable to provide this information in an automated

manner). It is worth noting that the performance of the SSA

method is sensitive to its configuration parameters. In this

work, the SSA detection masks were adjusted according to [13,

eqs. (3)–(4)], while the values for the sensitivity thresholds

used by the algorithm were taken from [13]. This choice

performs well but may not necessarily lead to a fine tuning

of the SSA performance with the particular spectrum dataset

employed in this study (an optimisation approach is discussed

in [13], which is beyond the scope of this work).

Step 4. Assess the accuracy of the estimated SAs: This step

involves the verification of the accuracy of the estimated SA

obtained from Step 3. It is performed through a comparison

between each original clean test grid generated in Step 1

and the corresponding test grid obtained in Step 3. The

performance of SAE methods is assessed in this work in terms

of the F1 score, which takes into consideration the possible

imbalance between the number of tiles in idle and busy states

in the original test grid. The F1 score is defined as [26]:

F1 =
2× TP

2× TP + FP + FN
, (1)

where TP , FP and FN represent the number of true positive,

false positive and false negative detections, respectively. The

F1 score ranges within the interval [0, 1], where the lower

bound of the interval represents the worst detection perfor-

mance and while the upper bound denotes perfect detection.

Simulation results were compared to experimental results

obtained with the hardware prototype shown in Fig. 5, which

was composed of a Signal Hound VSG25A vector signal

generator as the signal transmitter, a short coaxial cable along

with a 20 dB attenuator to emulate the transmission channel,

and a Tektronix RSA306B real-time spectrum analyser as the

Fig. 5: Hardware prototype used in this work: vector signal generator
(left), coaxial cable and attenuator, and spectrum analyser (right).

signal receiver. A wired connection was employed to avoid

unwanted interference to/from other wireless devices operating

in the neighbourhood of the prototype. The transmitter and

receiver were connected via USB to the same computer, where

a Matlab control program was run to coordinate the operation

of the transmitter and receiver and ensure that the data were

correctly synchronised so they could be compared to assess

the estimation accuracy. Such program was implemented using

Matlab’s Instrument Control Toolbox along with the libraries

and Application Programming Interfaces (APIs) provided by

the manufacturers.

The experimental platform was configured to replicate the

simulation configuration. The transmitted signal was a multi-

tone signal with a spectral shape similar to an OFDM signal

composed of 1001 unmodulated tones with random phase

spaced at 10 kHz around a central frequency of 1 GHz, with a

total signal bandwidth of 10 MHz. The centre frequency of the

receiver was also configured to 1 GHz with a frequency span

of 30 MHz (i.e., signal bandwidth was 1/3 of the frequency

span). The relation between the transmission power configured

at the signal generator and the SNR observed at the spectrum

analyser was carefully calibrated to enable a fair comparison

between simulation and experimental results.

V. PERFORMANCE EVALUATION

To illustrate the operation of the HT-based SAE methods

proposed in this work, Figs. 6 and 7 show examples of the SA

edges estimated by the proposed method based on Approaches

1 and 2, respectively. These figures represent the outcome of

Step 4c for Approach 1 (aggregating the detections for each

individual SA together in the same figure) and the outcome

of Step 4 for Approach 2. The figures show for reference

the edges detected by the Canny edge detector (Step 4a in

Approach 1 and Step 2 in Approach 2) as thick white lines

(notice that these SA edges are not perfectly rectangular

due to the corruption produced by false alarms and missed

detections). These figures also plot the detected peaks of the

HT joined by straight lines for a more clear visualiation.
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Fig. 6: Examples of the SA edges estimated by the proposed HT
method based on Approach 1. The peaks of the HT are identified
based on the maximum value of the HT, max(H), using different
thresholds equal to: (a) 0.1 · max(H), (b) 0.3 · max(H), (c) 0.5 ·

max(H), and (d) 0.7 ·max(H) [SNR = –5 dB].

These peaks are identified based on the maximum value

of the HT, denoted as max(H), using different thresholds

equal to 0.1 · max(H), 0.3 · max(H), 0.5 · max(H) and

0.7 · max(H). By carefully inspecting these figures, one can

notice that Approach 1 will only work with a threshold equal

to 0.1 · max(H); selecting a threshold greater than this will

lead to some of the edge components of the SAs being missed

(in particular in some of the vertical edges). On the other

hand, Approach 2 can detect relevant edges with thresholds

equal to 0.1 ·max(H) and 0.3 ·max(H), however it will miss

relevant edge components of the SAs if the threshold is set

to 0.5 ·max(H) or 0.7 ·max(H). These results indicate that

relevant peaks of the HT are observed at relatively low values

and therefore the threshold to identify the peaks of the HT

needs to be selected to an equally low value accordingly.

Another interesting observation that can be made from the

comparison of Figs. 6 and 7 is that Approach 1 seems to

misinterpret the edges of some small artefacts as edges of SA

components. This can be clearly appreciated in the bottom-

left corner of the top SA of Fig. 6, where a large number of

lines/edges are detected. These are not edges of a genuine SA

but simply the edges of small objects, possible fragments of

the original SA or a relatively large number of false alarms

that could not be removed in the false alarm removal step.

Such small objects can potentially be classified as independent

regions containing SAs in Step 3 of Approach 1 and each of

them will be processed individually with the aim to detect a

SA component in each of them, which leads to errors.
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Fig. 7: Examples of the SA edges estimated by the proposed HT
method based on Approach 2. The peaks of the HT are identified
based on the maximum value of the HT, max(H), using different
thresholds equal to: (a) 0.1 · max(H), (b) 0.3 · max(H), (c) 0.5 ·

max(H), and (d) 0.7 ·max(H) [SNR = –5 dB].

The observation above can be verified in Fig. 8, where it

can be noticed that a small SA is attached to the bottom-left

corner of the top SA detected in the final output of Approach

1. This seems to suggest that the principle of Approach 1,

according to which each region in a spectrogram where a SA

component is believed to be present is processed individually,

may be counterproductive since certain artefacts may mislead

the boundary tracing process of Step 3 and make it believe

that there are potential SAs where none are actually present.

To confirm this observation, Figs. 9 and 10 show the

equivalent result with Approach 2 for HT peak thresholds of

0.1·max(H) and 0.3·max(H) (which were observed above to

provide good SA edge detection performance). In this case it

can be observed that Approach 2 does not misinterpret small

objects or artefacts in the input spectrogram as individual SAs

due to its global processing of the whole spectrogram, which

confirms the observation above regardling the limitations of

Approach 1. However, it can be noticed in Figs. 9 and 10 that

Approach 2 can detect SAs in some regions where no SAs

are present. These erroneous regions seem to occur between

regions where genuine SAs are present and the error may

be due to some false alarms, which would be difficult to

remove following the employed filtering process when they

are present in small narrow gaps between SAs. However, as

it can be seen in Figs. 9 and 10, this problem can be easily

resolved by increasing the minimum percentage of busy tiles

that are required in a region for it to be considered as a

true SA. Configuring such threshold to 10% or 20% of the
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Fig. 8: Examples of the SAs estimated by the proposed HT method
based on Approach 1. The peaks of the HT are identified based on
the maximum value of the HT, max(H), using a threshold equal to
0.1 · max(H). The presence of SAs in the grid is detected with a
percentage occupancy threshold of: (a) 10%, (b) 20%, (c) 30%, (d)
Clean test grid (for reference) [SNR = –5 dB].

tiles in the rectangular region does not seem to be sufficient

since the percentage of busy tiles present in those regions

after applying the HT-based procedure is higher than these

thresholds. However, increasing the value of the threshold to

30% is finally able to discriminate correctly between true

SAs and regions containing small objects/artefacts. These

results indicate that Approach 2 constitutes a preferred option

compared to Approach 1 and that, with an adequate configu-

ration of its parameters, Approach 2 can provide an accurate

identification of the SAs present in a spectrogram.

Fig. 11 compares the performance of the proposed HT-based

SAE method with that attained by the ED, CT-SA and SSA

methods in terms of the F1 score, representing how accurately

the detected SAs describe the original SAs generated by the

transmitter. As it can be observed, Approach 2 provides a

higher accuracy than Approach 1 at high SNR and slightly

lower performance (with an almost negligible difference) at

lower SNRs; these results also confirm that Approach 2 is a

preferred option compared to Approach 1. When compared

with the other SAE methods used as a reference, Approach

2 can achieve the best performance attained by the other

methods in the region of higher SNR down to a minimum

SNR of about –6 dB or –7 dB, which can be identified as

the sensitivity of this SAE method. Above this SNR value,

the accuracy obtained in terms of the F1 score is noticeably

higher than that attained by the CT-SA and SSA methods and

is only matched by the ED method. However, it is worth

reminding that the ED method cannot extract automatically

the coordinates and dimensions of the SA in the spectrogram

and, in fact, it is unable to identify rectangularly shaped SAs.

Only the CT-SA and SSA methods are able to do so, both of

which provide an accuracy below that of the proposed HT-

based method. This better accuracy obtained in the region of

high SNR is obtained at the expense of a lower accuracy in

the region of low SNR. However, it is worth noting that once
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Fig. 9: Examples of the SAs estimated by the proposed HT method
based on Approach 2. The peaks of the HT are identified based on
the maximum value of the HT, max(H), using a threshold equal to
0.1 · max(H). The presence of SAs in the grid is detected with a
percentage occupancy threshold of: (a) 10%, (b) 20%, (c) 30%, (d)
Clean test grid (for reference) [SNR = –5 dB].
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Fig. 10: Examples of the SAs estimated by the proposed HT method
based on Approach 2. The peaks of the HT are identified based on
the maximum value of the HT, max(H), using a threshold equal to
0.3 · max(H). The presence of SAs in the grid is detected with a
percentage occupancy threshold of: (a) 10%, (b) 20%, (c) 30%, (d)
Clean test grid (for reference) [SNR = –5 dB].

the F1 score decreases below a relatively high value (close

to one) the detected SAs start to diverge noticeably from the

original ones, both in numbers and dimensions. Therefore, a

good detection accuracy in practical implementations requires

an F1 score very close to one, around 0.9 and above, which

can be obtained only under relatively high SNR conditions.

Under such conditions, the proposed HT-based method can

provide a more accurate detection of the SAs present in a

radio spectrogram. It is also worth noting from Fig. 11 that

the results obtained from software simulations provide a very

close match with (and are therefore corroborated by) those

obtained from hardware experiments.

Finally, Fig. 12 compares the computational costs of the

different SAE methods considered in this work. As it can

be observed, Approach 1 involves the highest computational
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Fig. 11: F1 score as a function of the SNR for the different
reference SAE methods (ED, CT-SA, SSA) and the proposed HT-
based SAE method (Approaches 1 and 2, using in both cases the
best configuration for each approach).

load over most of the considered SNR interval due to its

more complex procedure, which requires first isolating non-

overlapping regions of the original spectrogram and then

applying the proposed procedure to each region individually.

This results in a significantly higher computational cost that,

as seen in Fig. 11, cannot be justified based on the obtained

accuracy performance. On the other hand, Approach 2 requires

a significantly lower computational cost than Approach 1 in

the SNR range of interest (i.e., higher SNR values), which

can be explained by its more simple formulation where the

whole spectrogram is processed as a single image; this not

only reduces the computational burden of the proposed SAE

method compared to Approach 1 but also, as seen in Fig. 11,

provides more accurate results in the SNR range of interest.

The computation time of Approach 2 is comparable to that of

the reference methods. ED is the most lightweight method,

as it could be expected, with CT-SA requiring a slightly

higher computational cost (but lower than Approach 2) and

SSA requiring a higher computational cost than the proposed

method with Approach 2. Therefore, the proposed method

(with Approach 2) not only can provide significantly accurate

performance levels but can also do so at comparable costs than

other existing SAE methods (and even lower in some cases).

VI. CONCLUSION

Radio communication signals are often represented in many

practical application scenarios as a spectrogram, which indi-

cates the power observed at several discrete time instants and

frequency points within a certain time interval and frequency

band, respectively. An accurate estimation of the Signal Area

(SA) for each radio transmission contained in a spectro-

gram can provide valuable information in many practical

application scenarios, such as autonomous spectrum-aware

wireless communication systems. In this context, this work
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Fig. 12: Computational cost as a function of the SNR for the different
reference SAE methods (ED, CT-SA, SSA) and the proposed HT-
based SAE method (Approaches 1 and 2, using in both cases the
best configuration for each approach).

has proposed new methods for an accurate estimation based

on the application of the Hough Transform (HT) combined

with other techniques from the field of image processing. The

performance of the proposed methods has been evaluated by

means of simulations and the obtained results have shown that

they can achieve a high level of SAE accuracy. An interesting

feature of the proposed methods is their ability to extract

automatically the coordinates and dimensions of each SA

detected in a radio spectrogram. This feature can be useful in

the automatic processing of radio spectrograms, for example in

the context of autonomous spectrum-aware wireless systems.
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study on FFT-ED based signal area estimation for spectrum awareness,”
in Proc. Int’l. Workshop on Smart Wireless Commun. (SmartCom 2016),
IEICE Tech. Rep., vol. 116, no. 29, SR2016-9, pp. 27-34, May 2016.
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