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Abstract—The inability to perfectly know the system noise basically means being able to determine whether a primary
propertl_es '[O. infinite precision, referred to as noise uncertainty, signal is present within a certain frequency range [4]. A
results in noise power calibration errors that have been proven number of different signal detection methods, referredgo a

to impose fundamental limitations on the detection performance - . -
of any spectrum sensing (signal detection) method in cognitive spectrum sensinglgorithms in the context of DSA/CR, have

radio networks. In this work we argue that the inability of been proposed in the literature to identify the presence of
cognitive radio users to perfectly know beforehand the primary primary signal transmissions [5]-[7]. The existing sajus

signals that might be present in the sensed band and their provide different trade-offs between required sensingetim
properties, referred to as signal uncertainty in this work, also complexity and detection capabilities, but their pradtagapli-

results in an additional detection performance degradation. bility d d h h inf tion i ilable about
The noise uncertainty consequences have widely been studied,ca lity depends on how much information 1s available abou

verified experimentally and distilled into tractable mathematical the primary user signal. In the most generic case, a DSA/CR
models. However, the potential effects of the particular primary user is not expected to be provided with any prior infornratio

signal properties on the resulting detection probability of generic  about the primary signals that may be present within a certai
spectrum sensing algorithms, such as energy detection, havegaquency band. When the secondary receiver cannot gather

not been taken into account in the analysis and performance - . . . o
evaluation of spectrum sensing in cognitive radio networks. In sufficient information, the Energy Detection (ED) prinijj8]

this context, this work develops a mathematical model for signal €an be used due to its ability to work irrespective of the aign
uncertainty and, based on such model, analyzes the impact format to detect. Despite its practical performance litiotas,

of signal uncertainty on the resulting detection performance ED has gained popularity as a spectrum sensing technique for
of spectrum sensing, with and without noise uncertainty, and pga/CR due to its general applicability and simplicity asliwe
compares the practical consequences of both degrading effect . . . .
as its low computational and implementation costs. ED has
Index Terms—Cogpnitive radio, spectrum sensing, energy de- peen a preferred approach for many past spectrum sensing
tection, noise uncertainty, signal uncertainty. studies and also constitutes the spectrum sensing method
considered in this work.
. INTRODUCTION A recent study [9] based on empirical measurements of real
HILE still early in its deployment, Dynamic Spec_signals demonstrated that the detection performance of ED

trum Access/Cognitive Radio (DSA/CR) [1]-[3] isM&Y strongly vary with the primary radio technology being

a highly promising communications paradigm that can cfetected. C_ertai_n technology-_dependent inherent priep_ert

fectively address the spectrum insufficiency problem, whidn@y result in different detection performances for various
arises as a result of the existing conflicts between spectr@fmary signals under the same conditions. In other words,
demand growth and spectrum underutilization. DSA/CR ainhde detecthn probability for a f')_(Ed set of operating pa-
at improving spectrum usage efficiency by allowing Son{é\meters mlght be enough to reliably detect some primary
unlicensed (secondary) users to access in an opportuniSig1als but might not for some others, thus making some

and non-interfering manner some licensed bands temppralrﬁ’dio technologies more susceptible to interferences runde
unoccupied by the licensed (primary) users. the same operating conditions. The inability of a DSA/CR

One of the most important challenges for a DSA/CR netiser to perfectly know beforehand the primary signals that

work is not to cause harmful interference to primary user@ight be present in the sensed band and their properties,
To guarantee interference-free spectrum access, seqondiﬁ?e”e_d to assignal uncertaintyin th|_s work, resul_ts in a
users should reliably identify spectrum opportunities,jolh detection performance degradation since the non-inteter
requirement for the secondary network implies a worst-case
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detection when the received primary signal is impaired by Adf miss detectionP,,; = P(#Ho/H1), or its complementary
ditive White Gaussian Noise (AWGN) or wireless propagatioprobability of detectionP; = P(H1/H1) = 1 — P,,q4, and the
environments such as Nakagami or Rayleigh fading channpt®bability of false alarmP;, = P(H1/H,). Large P; and
[12]. Nevertheless, the potential effect of the particplamary low Py, values would be desirable. Nevertheless, there exists
signal properties on the resulting detection probabilify @ trade-off betwee; and Py,, meaning that improving one
generic spectrum sensing algorithms, such as ED, has not bekthe performance metrics implies degrading the other one.
taken into account in the analysis and performance evaluati
of spectrum sensing in DSA/CR networks. In this contexf, o ) ] ]
this work covers such deficiencies and fills the existing gaps "€ ED principle, also referred to aadiometric detection

by developing a model for signal uncertainty and analyzir@be""sure_S the energy received on a primary band during an
its impact on the resulting detection performance of E[PPservation interval and declares the band as busy if the
First, Section Il reviews the operating principle and tietignl Mmeasured energy is greater than a properly set predefined
fundamentals of ED under AWGN channels as well as tfgreshold, or idle otherwise [8]:

consequences of noise uncertainty. Starting with these cla N 5 Hi

sical theoretical results, and after highlighting its resity T(y)=>_lylnll* = A (2)

in Section 1ll, a model for signal uncertainty is developed n=1 Ho

in Section IV based on theoretical reasonings complementéfiere T(y) is the ED test statistic computed over the signal
with empirical approximations. Concretely, a generic matiyectory = (y[1],y[2],...,y[N]), and X is a fixed decision
ematical expression for the received Signal-to-Noise dRafinreshold to distinguish between the two hypotheses in (1).
(SNR) distribution under variable primary transmissionvpo ~ The decision threshold could be chosen for an optimum
patterns is developed, which is then employed to derive tHade-off between?; and Py,. However, this would require
average detection probability of ED under signal uncetyain knowledge of the noise and detected signal powers. While the
Based on such model, Section V discusses and exemplifi¥se power can be estimated with relatively simple methods
with numerical results the impact of signal uncertainty be t [13], the estimation of the signal power, which depends on
detection performance of ED, and compares the degradiM@ny varying factors such as transmission and propagation
effect of signal uncertainty with that of noise uncertaintyeharacteristics, involves the use of complex and compmutati

Finally, Section VI summarizes the main conclusions deriveilly costly methods. In practice, the threshold is normally
from this work. chosen to satisfy a certaif’y, [14], which only requires

the noise power to be known. For a Constant False-Alarm
Rate (CFAR) threshold-setting approach [14], the detactio
probability of ED under AWGN channels as a function of the

. Energy detection

Il. THEORETICAL PERFORMANCE OF ENERGY DETECTION

A. Spectrum sensing SNR, denoted as, is given by [15]:
The spectrum sensing problem can be formulated as a binary 1 oyl
hypothesis testing problem with the following two hypotbgs Py(v)=9Q <Q (\2%)(12]\[ ) N’Y> (3a)
+7
Ho : y[n] = w(n] n=12...,N (1) N
Hi:ynl=zn]+wn] n=1,2,...,N ~Q <Q1(Pfa)—1/2fy> (3b)

whereH, is a null hypothesis stating that the received signal . . ) -
samplesy[n] correspond to noise samplesn] and therefore Where Q(-) is the standard Gaussian tail probabilify-
there is no primary signal in the sensed spectrum band, dHgction [16, (26.2.3)]. The approximation of (3b) assumes
hypothesisH, indicates that some licensed user sigrfal] is '€ ¢ase of low SNR regime in DSA/CR ( 1).

presentN denotes the number of samples collected during ti® Noise uncertainty

signal observation interval (i.e., the sensing periodpRasiz-  c5jipration errors as well as changes in thermal noise cause

ing that the decision is made based on a limited number of Sig; yomperature variations limit the accuracy to which noise
nal samples. The ideal spectrum sensor would select hymeSwer can be estimated, leading to some noise uncertainty.

sis#; whenever a primary signal is present and hypoth##sis |, hractice, the noise power is therefore uncertain within a

otherwise. Unfortunately, spectrum sensing algorithms/ M@gain interval [17]. Let's assume the noise uncertainoget
fall into mistakes in practice, which can be classified imtiss 62 € [02, a0 [18], wheres? represents the estimated noise
w? w 1 w

. X ) o
detectionsandfalse alarms A miss detection occurs when ower, 2 is the nominal noise power and> 1 is the noise

prim:?\ry signa! is present in the sensed b{?\nd and the Sp‘,aCtrMertainty. Based on the estimated noise pawjgrthe worst-
sensing algorithm selects hypothe#is, which may result in o0 62 — ao2) detection probability given by (3) becomes:
harmful interference to primary users. On the other hand, a v v

false alarm occurs when the sensed spectrum band is idle and (P AN — N )
the spectrum sensing algorithm selects hypothgsiswhich Piy) =0 <QQ (Pra) —N(y+1- a)) (4a)
results in missed transmission opportunities and thesefor V2N(1+7)

in a lower spectrum utilization. Based on these definitions, N

the performance of any spectrum sensing algorithm can be ~Q <06Q1(Pfa) - \/;(7 +1- a)) (4b)

summarized by means of two probabilities: the probability
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L Jge =001 10logiox =0 4B s detailed and in-depth description of the measurementqptatf
f ' as well as the measurement and evaluation methodologies
0.9 employed to obtain these results can be found in [9].
0.8} Two important aspects in Figures 1 and 2 are noteworthy.
S 07l of First, the experimental results indicate that the ED perfor
5067 § mance may _notably \_/ary_with the rgdio technology bei_ng
s i | detected. This behavior is not predicted by the classical
5,05 = theoretical results associated to ED, which were presented
%04 Theoreteal WG| Section Il. As a matter of fact, for a given set of operating
8, :/Sir;\:glg#c\?m | parame'ters (targePy,, sample 'IengthN, SNR ~ and noise
. DABLT uncertaintya) the expressions in (3) and (4) suggest that the
0.2 :Egg&goo I resulting performance in terms dP; is unique. However,
0.1 —+—DCS 1800 H Figures 1 and 2 clearly demonstrate that the experimental
Ol i [ Lo oUMTS P, may strongly depend on the primary signal being sensed.
w20 715 -0 ‘%NR(ng’ 5 015 Second, the performance differences among various radio
technologies are not constant, but depend on the sensing
Fig. 1. Theoretical and experimental performance of energgetien without period . Summarizing the analysis and discussion of [9],
noise uncertainty. this behavior can be explained as follows. M is suffi-
Pro = 0.01, 10log;g o = 1 dB ciently low, the ED test statistic may follow the instantang
! Theoretical (AWGN) / i variations of the received signal energy. Under the same
0-9*:3”;{;9#?3' v average SNR conditions (i.e., signals with the same average
08~ - -DAB-T energy, assuming constant average noise energy), thissmean
—TETRA . . . - . . .
€ 0.7/l — E-GSM 500 that a higher _s_lgnal energy variability (variance) impligs
g jighcﬁfoo higher probability that the instantaneous energy leveld (an
g 06f the ED test statistic) falls below the decision threshoh. |
“3;057 E 1 such a case, the channel would be declared as idle even if
%0_4, x | it should be declared as busy, thus resulting in a degraded
) o detection performance. Since various radio technologiag m
o 0.3 % | exhibit different signal energy variation patterns andamees,
0.2 S 1 this explains the different detection performances olegbrv
01l F ] in Figures 1 and 2. AsV increases, the test statistics are
o o ‘ ‘ computed over longer observation periods, thus averagieg t
-20 -15 -10 -

5 10 15 peculiarities of any instantaneous energy variation patad
reducing its variance. In such a case, although the vaitiabil
! ) . .. the received energy remains the same, the variability ofetbie
Fig. 2. Theoretical and experimental performance of energgctien with - . ..
1-dB noise uncertainty. statistic decreases and so does the probability of mistilegec
the primary signal. For sufficiently long observation pdsp
the test statistic ceases to follow the instantaneous Isigha
Equations (3) and (4) are graphically shown as light thicknergy variations and its value closely resembles the true
lines in Figures 1 and 2, respectively. As appreciated,enoisignal energy. When this occurs for all the considered sgynal
uncertainty imposes fundamental limitations on detectidhe obtained performance curves converge. This explaias th
performance. Although classical detection theory staltes t convergent trend observed in Figures 1 and 2Vamcreases.
degradation in the detection performance due to reduced SNR he discussion above indicates that the variability (vere
can be countered by increasing the sensing time [19], [2@] (°f the primary transmission power pattern may notably affec
Figure 1), in practice there exists a limit referred toSR the ED performance The potential effect of this particular
wall (see Figure 2), which is given by,.; = a — 1 [18], Primary signal property on the resulting detection perfance
below which the primary signal cannot reliably be detected has not been studied and cannot be predicted with the existin
matter how long the sensing period is [10], [11]. The existenanalytical results. A novel model is developed in Section IV

of SNR walls has been verified experimentally [9], [21], [22] - bty of ed ohtb bed
- - - . e variability of the received power might be ascribed to phepaga-
demonstrating that a small noise power estimation error mf’f% environment where the measurements were performed andadiregf

cause significant performance loss in ED. properties of the channel. However, it is worth noting tfret tmeasurement
conditions were carefully selected to minimize the impact dfirfg and
the empirical data were carefully analyzed and selected swurenthat the
IIl. EMPIRICAL PERFORMANCE OF ENERGY DETECTION transmission power pattern was the dominant aspect in thebitity of the
) ) received power (see [9] for details on the measurements ancdwtiyical
Figures 1 and 2 show the experimental performance of thepects). In fact, the resulting detection performanceifmrags with perfectly

ED method when applied to real-world primary signals gfonstant transmission power patterns (e.g., digital TV)eegrwith the
. theoretical prediction for an AWGN channel (i.e., a channghwo fading

various radio teChnOIOgies' inCIUding analoQical and tdlgl where the SNR is constant). Therefore, the variation of gweived power
TV, DAB-T, TETRA, E-GSM 900, DCS 1800 and UMTS. Adue to the channel fading was not significant in the field measants.
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IV. SIGNAL UNCERTAINTY MODEL of cases with a reasonable level of accuracy. This approach
A. Problem formulation would be valid as long as the resulting expression in (5)
.is able to describe, with a sufficient level of accuracy, the

since it is the result of the combined effects of the primar(%?(perlmental probability of detection and the performance

. . . ifferences observed in Figures 1 and 2 for real-world dgyna
transmission power pattern and the propagation envirohmefy e oo i technologies.
As a result, the probability of detection instantaneousliies ) T o
with the receiving SNR. In such a case, (4) gives the probabil !N order to find a realistic model fof, (), the empirical
ity of detectionP, conditioned on the instantaneous value opNR PDFs of various real-world signals were computed based
~. Under varying SNR, a more useful performance parameft the measurements performed in [9] for different radio
is the average probability of detectid®,; experienced for an t€chnologies (analogical/digital TV, DAB-T, TETRA, E-GSM

average SNRy,, which may be derived by averaging (4) oveP00, DCS 1800 and UMTS). For each individual signal of

the SNR statistics: each measured radiq technology, the obtained gmpirical PDF
was compared to a wide range of PDF models (Figure 3 shows

Pa(v) =E[Ps(y)] = / Py(7) f(7)dy (5) some examples for selected signals). It was found that most

v of the empirical PDFs could acceptably be approximated by

where P,(y) is given by (4) andf,(y) is the Probability either Rayleigh distributiong’*(v) = (v/s?) exp(—+?/2s?),
Density Function (PDF) of the received SNR. Closed-form ex- > 0 (Figure 3(a) shows an example) or gamma distributions
pressions for the integral in (5) under Nakagami and Rakleigs’(v) = (v*7!/0*T'(k))exp(—v/0), v > 0, with k = 2
fading environments have been derived in the literaturd [1@Figure 3(b) shows an example). For these distributions, th
in order to reflect the impact of radio propagation channeghgrameterss and ¢ can be computed as = /2/77y =
on the resulting detection performance of ED. In contrdm, t 202/(4—m) and 6 = 5o/2 = /03/2 [23], where v,

focus of this work is on the |mpqct of the primary transml_esmand 03 represent the average SNR and the SNR variance,
power pattern. Therefore, it will be assumed thfa(y) is

_ > respectively. The values of; anda?y for the captured signals
mostly the result of the primary transmission power paterfq e respectively estimated as the sample mean and sample

which was shown in Section Ill and demonstrated in [9] 19, iance of the instantaneously received SNR values after
strongly impact the ED performance. The particular shap@majizing the signal sequences as detailed in [9]. Based o
of f,(7), and hence the detection performan€g(vo), Will g, estimations, the corresponding PDF models were derive
depend on the primary transmission power pattern and fiS<aq on either, (denoted asnean-basedor o2 (denoted
variability (variance). The main objective of this sectian asvariance-basejl As it can be observed in Figares 3(a) and
to solve (5) to establish a direct relation between the p13'm1a3(b)’ the Rayleigh and gamma distributions provide reasigna
power variability and the resulting detection performante good fits for empirical SNR PDFs observed in reality and

ED. To this end, a model fof,(v) is required, which is ¢q4 pe considered as models for the SNR distribufiofy ).

developed in Section IV-B. i o
For the Rayleigh and gamma distributions, the SNR mean
o o and variance are related a§ = (4/m — 1)~g ~ 0.27~3 for
B. Approximation for the SNR statistics the former ands2 = 0.5+3 for the latter [23]. This indicates
From a realistic point of view, it is reasonable to assumée thie existence of a relation of the fomf = +2 in practice,
f~(~) cannot be perfectly known in practice. Determining awhere § = o—g/yg > 0 can be regarded as a normalized
exact expression for the distribution of received SNR w&luevariance and thus as a metric representing the variabifity o
f~(7), would require a perfect knowledge of the transmissiathe primary transmission power pattern. As mentioned lgefor
power statistics, which are in general unknown and cannbie aim is to establish a direct relation between the primary
easily be determined in reality since they may depend on mgomgwer variability, which can be quantified by meansiofand
factors such as the particular radio technology being tedecthe resulting detection performande;(y,). In the case of
and its signaling format as well as the instantaneous dondit the Rayleigh and gamma distributions, the valug3a$ fixed
of the primary network (e.g., a cellular mobile communieati (5 ~ 0.27 for the former,5 = 0.5 for the latter). This means
system with load-based power control). Even if the transmithat the resulting expression f@;(v,) in such cases would
sion power statistics of any primary radio technology couldot allow to analyze the ED performance for any arbitrary
be assumed to be known, the obtained expressiory.foy) primary power variabilitys, but only for those cases where
would be valid for a single radio technology, thus requirang the received SNR can adequately be modeled with a Rayleigh
separate analysis for every possible primary radio tecgyol or gamma distribution. This observation motivates the gear
to be detected. Such analysis would result impractical. of an alternative model foy,, () where can be configured
As an alternative, and given that deriving an individuah order to analyze the impact of arbitrary primary power
analytical expression off,(y) for every possible case isvariabilities (variances) on the detection performaftgo).
infeasible, this section is aimed at developing a generd,simple and analytically tractable PDF model verifyingsthi
technology-independent approximated expression thatoeanproperty is the Gaussian distribution, where the variarsce i
determined without a perfect knowledge of the primary tran;idependent of the mean. It is important to note, howevat, th
mission power statistics and that can be used to describe the Gaussian PDF is defined for any real value whilz 0.
distribution of the received SNR values over a wide rangghis issue can be resolved by truncating the Gaussian PDF to
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12 — 12 — approximations is perfect although all of them are able to
&1 R st o0z)| B 10 R e e kel qualitatively describe the empirical SNR distribution (e
= + Gamma (mean-based) [0.11] = + Gamma (mean-based) [0.04] .
5. - ﬁagfmzﬁéanance-?;g’i[?[o.]zs] o . | 3a?fmzﬁéa,.an_ce-?§§§?)[o.]os] 3(d)). In conclusion, the model of (6) can be employed to
o XXy - - -Modified Gaussian [0. ° (3%¥P0 |-~ -Modified Gaussian . . A .
2 s | OE mathematically describe, in an approximated but acceptabl
g § | o N, manner, the empirical distribution of received SNR values.
g 9 £ 43
% ' g 2(p8 \D\DDD . . - .
S N § NG C. Approximation for the probability of detection

0 Di\}ormahzedos'%\lRy(lineaor')3 04 0 0i\}t)rmal|zedos'%\lRy(lineaor')3 04 TO faCl“tate the analyt|ca| I’eSO|UtI0n Of (5) W|th the prO-

@) (b) posed SNR PDF models, the tetRy(~) is approximated as
follows. According to (4),P;(y) can be expressed as:
12 12
——Empirical ——Empirical
0 o roeen e e oo | B ) L | g e e e 00 Pa(v) = (7)) ™

+ Gamma (mean-based) [0.16]
x Gamma (variance-based) [0.38]
S - - -Modified Gaussian [0.03]

x

« oo + Gamma (mean-based) [0.05]
. ox (? x- Gamma (variance-based) [0.12]

. |- Wodited Gaussan 005 where((v) is given by:

Probability density function (PDF)

Probability density function (PDF)
=)

aQ ' (Pra)V2N — N(y+1—a)
4 C(y) = (8a)
V2N(1+7)
. 2
g 1 N
% 01 02 03 5a % 01 02 03 0.4 ~aQ (Pfa) Ve (7 +1- a) (8b)
Normalized SNR vy (linear) Normalized SNR vy (linear)
(c) (d) The Gaussia)-function can be approximated by a second-

. - . order exponential function:
Fig. 3. Examples of empirical and approximated PDFs of the vedeSNR P

for selected signals from field measurements (humbers betvgermmesbrack- Q(x) ~ e—(ax2+bx+c) >0 (9)
ets represent the Kolmogorov-Smirnov distance to the empitis&ibution). ~ ’ =

with fitting coefficientsa = 0.3845, b = 0.7635 and ¢ =
0.6966 [25]. Notice that¢(+y), the argument of th€-function
positive values and introducing a normalization faotosuch N (7), may take both positive and negative values even thoug
thathOC f4(7)dy = 1. This results in the following SNR PDF 7 > 0 (see (8)). Since the approximation in (9) is valid for
model [24, Appendix A]: positive arguments only, the prope®(x) = 1— Q(—z) must
therefore be used for negative values(dfy). Applying this
"JVWG('V) ~_ 5 6_5(%) >0 ©6) approximation to (7) it finally yields:
V2moy e (@lCNIP+bC()+)

where the normalization factor is given by = 2/[1 + P ) =@ i), ¢(y) >0
erf(vo/v/20,)], with erf(-) being the error function [16, a(7) = QL) ~ 1 — e~ (@l¢MMP=b¢(N+e)

(7.1.1)]. Whileog r_;mdyo seem to be_ mathemgt_ically indepen- —1_ e,(mqgwe)? C(v) <0
dent parameters in (6), the analysis of empirical data tsvea

that the relations? = 3 (with 3 > 0) also holds here. Note where((7) > 0=~ <&, ¢(v) <0 = v > & and: (10)
that 0—3 and o cannot be independent in practice as a result

of the boundy > 0 (e.g., a low mean value, cannot be 0= alv (11a)
associated with an arbitrarily large varianc%). The main 2

advantage of this model with respect to the Rayleigh and . -1 N
gamma models is that the resulting expressionfgf, ) will V= —aoQ "} (Ppa)V2N —aN(a—1) - b\/; (116)
be obtained as a function ¢f thus enabling the performance . N
analysis of ED for any arbitrary primary power variability. == — aaQ (Pfa)m_ aN(a—1) +b\/: (11c)
The exact value ofs can be assumed to be unknown to 2

the secondary receiver due to the inability of a secondary ¢ — 4 lagl(pfa) + \/ﬁ(a 1)]

user to perfectly know beforehand the primary signals that 2

might be present in the sensed band and their properties. Thi N

parameter will henceforth be referred tosignal uncertainty +b |aQ H(Pra) + \/;(a -1 +¢ (11d)
The validity of this model is corroborated in Figure 3. For

the cases where the received SNR can be approximated by N 2

Rayleigh distributions (Figure 3(a)) or gamma distribno © =« [aQ‘l(Pfa) + \/;(oz - 1)]

(Figure 3(b)), the model of (6) provides a reasonable fit.

Moreover, it is interesting to mention that, for some cases . N

where the empirical value of is neither 0.27 (Rayleigh —baQ™ (Pra) + \/7W_ | +e (11e)

case) nor 0.5 (gamma case), the proposed model is able to

prowde more accurate fIFS, as illustrated in the example of £=a /fQ_l(Pfa) ta—1 (11)
Figure 3(c). In a few particular cases none of the considered N
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Py (n0) = / Pa(y) £ ()dy (12a)
¥
13 _ 2 00 _ 2
S —@ i)~ (050) +/ | e@trmre)] 3 (50) 12b
oo, l/o e e Y ; [ [ }6 Y ( )
K E— K 1 |2 ~> [ (2@54—@) < T )
~ —erfc + = —exp| = —@ | |erf | ——— | —erf | —=
2 < V2o, ) 2\ 2020 (49 2/ 2v/Q
=2 0O =
-k 1 ~exp | —= — O | erfc 208 tu (12¢c)
2 2020 49 2vQ
—R.G 1V [« U2 v 206 + U
P, ~ T ——1] = — -9 fl—= ) —erf | ———
o = v+ gige (G5 0) [ (5g) - ()
12 [« =2 206 + = 1 e=® — (WP HTEre) (6 +E5+0)
— = = _ fo | 2> _— — - 1
+ 21 QSexp(4g @)erc( oo ) 2 55 (13)

D. Closed-form expressions

Substituting the approximations of (6) and (10) into (5

yields (12), whereQ Q+1/203, @ U — vy/02,
E=E2-7/02 ®=>0+15/202, © = © +15/202 and

erfc(-) is the complementary error function [16, (7.1.2)]. T
two last terms of (12c) lead to similar numerical values a
approximately cancel out each other. The result of (12)d:ou"fI

therefore be simplified to:

&'7
k £— erfe (ﬂ32>
—erfc =
2 \@0’7

—MG
P =
d (’70) 1+ orf (\/g‘; )

Q

(14)

. . . i . . . —MG
This approximation is valid over a wide range of SNR valueslin Py (7o)

and tighter for highV-and low Py, values.

For comparison purposes, (5) was also solved when the SNR
follows Rayleigh and gamma distributions. In such casess, th

resulting detection probability is given by (13), whéfey,) =
exp(—(m/4)(§/70)%), v = /2/T 70, @ = Q4 7/drF, T = ¥
and= = = for the Rayleigh distribution, whilé (o) = (1 +
28 /v0) exp(—2£/70), v = 70/2, 2 = Q, ¥ = ¥ 4 2/, and

—_ —_
— — =

hr?)OPerating conditions, that the detection performance atby

case. In other words, for a given average SNR, the gamma dis-
ibution is characterized by a higher variance. This sstge
hat a higher signal variability can therefore be assodiate

a lower detection performance. In fact, the results obthine

with the modified Gaussian model indicate, under constant

s the primary signal variability3 increase§ which is in
accordance with the experimental results observed in @ecti
[ll. In the opposite direction, (12) converges numericatiy(4)
as the signal variability decreases. This can also be pgeatlic
analytically since:

1072 g

(77—>

K
lim P, —e
o), a(7) oo,

/ Pa(1)8(y — v0)dy = Pa(yo) (A7)

where P,(~) is given by (4) andé(-) is the Dirac delta
function, which can be expressed as the limit of a Gaussian
PDF as its standard deviation tends to zero. For a constant-

E = 2+2/~, for the gamma distribution. As in (12c), the laspower transmitter, the received SNR is constant (negigtkia
terms of (13) approximately cancel out each other, leading thannel propagation effects), meaning that the instantane

the approximation

Pl (o) ~ Ry 15
a4 (70) ~ exp vy <%> (15)
for the Rayleigh case and
Pin) ~ (1+% ) e (-£) 16)
70 Y0

for the gamma case.

SNR~ equals the average valyg at any time, and in such a
case (4) and (12) coincide. It is also worth noting in Figure 4
that the proposed model with = 0.27 (which corresponds to

a Rayleigh distribution), results in a detection probapithat

is quite similar to that obtained for Rayleigh SNR distribuas,
indicating that the proposed model is able to describe, with
reasonable accuracy, the experimental probability ofafiete
observed for real-world signals.

Figure 4 compares (4)’ (12) and (13)_ The resulting proba_2Under sufficiently low SNR conditions, a higher signal vhiii@dy implies

bility of detection for primary signals whose received SNaRi ¢

a higher probability that the received signal power is abtiwe decision
threshold, and hence a higher detection probability asreeden the left-

be modeled as a gamma distribution is lower than that oldain@ost part of the curves in Figure 4. However, spectrum serisingsigned

for primary signals with Rayleigh SNR distributions. Thisnc
be explained by the fact that ~ 0.27+3 (8 ~ 0.27) for the
Rayleigh case whiler> = 0.5+ (8 = 0.5) for the gamma

to operate in the regions of high detection probability.(itbe right-most
part of the curves), where the detection performance degragéehe signal
variability increases. Therefore, from a practical viewpgoan increased signal
variability results in a degraded detection performance.
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1 1 T T
— Empirical T(N)
0.9¢ 0.9 © Model T(N) = NX =N~ ||
0.8l osdl | Empirical p i
; _ ¢ Model p= (N" - 1)/(N - 1)
507 . 0.7 Fitted r = 0.06 J]
s
o 0.6f 0.61 g
o ¢
S 9 B
> 0.5 0.5¢-]
§ 0.4f 0.41¢ 1
o i =
S s 03l ' Fitted r = 0.49
0.21 0.21 \ )
O  Constant-power transmitter N/ e e
0.1 Variable-power transmitter (Gamma model) H 0.1F9, Q
— — — Variable-power transmitter (Rayleigh model) . o A
b Variable-power (Modified Gaussian model) TR S 2
-20 -15 -10 -5 0 5 10 15 1 10 20 30 40 50
Average SNR (dB) Sensing period, N

Fig. 4. Probability of detection for constant- and variaptever transmitters Fig. 5. Empirical and approximated results foand 7(N).
when the SNR is modeled as modified Gaussjare ([0.01, 0.27]), Rayleigh
and gamma distributions.

where it has been assumed that the samipleg|> have equal
variance (i.e.ai is constant along time) andrepresents the
average correlation of distinct samples. According to (19)

The model of (12) is able to describe the impact of the(N) ~ (1/N) + p(N — 1)/N. In practice, however, the
primary signal variability3 on the resulting detection per-correlation coefficientp is not completely independent of
formance of ED. However, the convergent trend observed i sensing periodV. Based on the empirical measurements
Figures 1 and 2 as the sensing peridncreases (discussedperformed in [9], and by means of curve fitting procedures,
in Section Ill) is not described by (12). This phenomenoti was verified that the resulting empirical values of the
can be modeled as an effective reduction of the primafyerage correlation coefficient can accurately be apprabech
signal variability 3 as N becomes larger, which can beasp ~ (N" —1) /(N — 1), with r being a fitting coefficient.
expressed asrﬁ = B7(N)~2, where(N) € (0,1] is a Introducing this approximation into (19) yieldV) ~ N™X,
monotonically decreasing function df. An expression for With x = 1 —r, which was proven to describe experimental
7(N) can be derived as follows. The ED test statigtizy) as results reasonably well (see Figure 5). The paramater
defined in (2) represents the received primary signal enerd§termines the rate at which the detection performance for
in a sensing interval ofN samples. The received signalarious radio technologies converge Asincreases, and it
power can therefore be obtained B§y)/N. Notice that the Will henceforth be referred to as tenvergence rateNotice
term |y[n]\2 in (2) is directly related to the instantaneoughatx andr are related to the correlation coefficigsit which
signal energy/power and the instantaneous SNR. Its variafgeans that the pace at which the detection performance for
Var(|y[n]|*) = Var ([T(y)/N]| y_,) is therefore associated tovarious radio technologies convergeMs:ncreases in practice
o2, the variance of the instantaneous SNR. The reduction @#Pends not only on the number of signal samples collected
the effective SNR variance a6 increasess (NV), can therefore during the sensing period, but also on the correlation

be determined based on the variance of the test statistic agmong them, which in turn depends on the sampling rate
at which the samples are collected and its relation with

Var <T(>’)‘ > the primary signal dynamics in the time domain. LBt
NolN>1 (18) denote the sampling period (i.e., the time period between tw
) consecutive signal samples). It is reasonable to assurhththa
N=1 correlation between two consecutive signal samples dsesea

asT, — oo. If T, is sufficiently large to assume that= 0,
thenr ~ 0 and7(N) ~ 1/N, which is the maximum rate at

E. Impact of the sensing period

T(N) =
Var(%

Both variances are related as [26, (2.21)]:

LN | X which the detection performance can convergeéVvaimcreases
Var NZ\ [n]|2 = ﬁZVM (\y[n“?) (x = 1). On the other extreme, for completely correlated
=1 ne1 samples 4 ~ 1), which corresponds td; — 0, r =~ 1
] NN and 7(N) =~ 1, meaning that in such a case the detection
+ 2 > Cov (\y[m]\2 , |y[n]|2) performance for various primary signals would not converge
m=1 n=1 (x = 0), no matter how large the sensing peridd is (the
nm trend would be as observed in Figure 4).
N[l N-1
= Var (\y[n]| ) —+ —
N N 3In fact, it is interesting to note that = 0 for p = 0, » = 1 for p = 1,

(19) andr —pasN — 1.
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Pjo = 001, 10%ogip0 = 1 dB, ¥ = 100 requirement that must be satisfied for SNR values above a
predefined thredhold, i.&24(yo) > P for all yg > 2.,

Digital TV ———>

(B=0.01,x=059) ey Let's assume that the DSA/CR system is designed to guarantee
08F oo T ovts ] P, = 0.9 at a givenyy". This requirement implies a
< (B=07,x=023) minimum sensing period for the DSA/CR network™*",
g os Anslogical TV | which could be estimated as a function gf*" based on
% E (B=0.29,x=0.17) the classical result of (3)(= 1 in (4), assuming a perfectly
z z R S 900 cabrilated noise poweL), denote(i %gfnﬂ;gm. Based on this
§0-4’ s 9 (8=0.23,x = 0.24) 1 discourse, the equalitP,(v) = P, should be true for
o

N = NZur. .. To verify this statement, and based on the
model of (12), Figure 7 plots the resultig, (o) at the SNR
valuesyy =~ for which N7\ . “equalsl10', 102, 10° and

Vo 10%, when the target probability of detection ;""" = 0.9
- - 2 0 2 s and N = N7  As it can be appreciated, whe¥™™" is

classic* .
SNR (dB) —=mn

computed based on (3), the equal®y(y,) = P, holds

_ B _ _ ~ for constant-power transmitters only (— 0). For primary
Fig. 6. Probab_lllty of Qetec_tlon as afu_nctlon of the SNR.SSIE_zaI t_heoretlcal signals of uncertain power variabilit)ﬁ(> 0), the resulting
performance (light thick line), experimental performanceli@stine) and —_ . — min o )
proposed model (dashed line). P4(vo) is lower than the targeP; = 0.9. It is interesting
to note thatP4(~o) first decreases below,; " as the primary
signal variability 3 increases, but after reaching a minimum

Slalue it increases again. I# were made arbitrarily large,

fortrpance of EbD undEr Ivz:tjrlable_ pdr_lm:';lr)(/j tLansrln2|ssmr;] powa (7o) would also increase. However, it is worth noting that
patterns can be modeled as indicated by (12), where % maximum signal variability observed empirically in the

H 2
average SNRyo and the SNR variance?, are related as \\o.q\rements performed in [9] was= 2.29. This indicates

2 _ —X A2 H H e
oy = BN"X1g. The .s_|gnal uncerFamty paramgt@, > 0, that for practical values off, the resultingP4(~,) is lower
represents the variability of the primary transmission gow — min ) . .
than P, and the signal uncertainty phenomenon always is

while the convergence rate parametere [0, 1], determines : . : . P
the pace at which the detection performance for vario&sqegradmg effect In practice, asilllustrate.,'d n F!gure 7 fo
arious operating parameters. It is also interesting tee not

. . . oo V
rimary signals converge as increases, and it is related to . i ) ;
Fhe co?/relzgtion among ?he signal samples that the minimum value ofP,(v,) is reached at different

values of (depending on the operating parameters), but it is
always constant. In fact, it was verified that fBf, " > 0.9,

—min

e worst-case performance isin {?d(yo)} ~08-P,;

0.2

Digital TV, DAB-T, E-GSM 900

F. Model validation

. . . . h
Thg overall mod(_el is validated in F|gur_e 6, where th_% eaning that the worst detection probability is about 80% of
experimental detection performance of ED is compared wi

the theoretical prediction of (4) as well as the performancee target valqe (this is hqwever an optimistic gstlmatlaedm .
oredicted by the model of (12) based on the values3of on the no noise uncertainty assumption). This means that if

and y derived from empirical measurements. The resulgs'g::il:]u?ﬁigﬁér:)gflsangtszéeg rl1r:=,tt(\)/v grclfci)sugteiiniégeaiggfézﬁ
are shown forN = 100 and 1-dB noise uncertainty. As 9 9 9

opposed to the classical theoretical result of (4), whicdjuots o the classical reSL_JIt of (.3)' then there WOUId.be a potentia
: . nd unacceptable risk of interference to the primary system

the same detection performance for all the considered radid

technologies, the proposed model is capable to captureeand r

produce the impact of the variability of different transsi@ B. Performance analysis with noise uncertainty

power patterns on the experimental performance of ED, thuSthe results of Figure 7 correspond to the ideal case of no
providing a more accurate estimation of the real perforr@angyise uncertainty, which is never true in reality. Let's sioer

of ED in practice. that the DSA/CR devices are assumed to operate with a small
noise power calibration errotlog,, o = 0.1 dB) andN™"

] ) ) _is selected accordingly based on (4). In this case, the compa
Based on the model developed in Section IV, this sectiay of Figures 7 and 8 indicates that the detection perfocman
analyzes the impact of the unknown primary power varigbilityegradation due to the signal uncertainty phenomenon may
(signal uncertainty) on the detection performance of EDhWipecome more severe in the presence of noise uncertainty.
and without noise uncertainty, and compares the practiGfle most unfavorable case corresponds to low convergence
consequences of both degrading effects. The design and c@fles, where the worst-case detection performance desreas

V. SIGNAL AND NOISE UNCERTAINTIES

figuration of ED is discussed as well. as N increases (see Figure 8). This aspect should carefully be
o ) ] considered in the design of DSA/CR systems since DSA/CR
A. Performance analysis without noise uncertainty devices are expected to operate in low SNR regimes, where

The maximum interference constraint for a DSA/CR nethe required sensing time intervals can usually be high,imnd
work can be mapped to a minimum detection probabilitthe unavoidable presence of noise uncertainty.
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—=min —=min

P = 0.9, Py, = 0.01, 101og, = 0.0 dB P =0.9, Py, = 0.01, 10log, = 0.1 dB
0.92 T T T T T T
[—x=00 ---x=02 + x=08 . [—x=00 ---x=02 + x=08
0.9”*§#ii***%***************L\J;}&O** —10%
= * ¥ ox % * ok ok o ox e O'g’ki**iiiii****************Q;}gﬁ*** J
i\ * A Ak xpy  N=108 * ok Ay o
0'88?\,\\ ok *********; vk *** ***************
| * * *|
= N=103
5086 sossf 4 “x Vs gp0 10 |
g 0.84 g Y
5 5 0.8l
S 082 ° A
= = FRRY
Qo Qo \
g 08 So7sf|i\ e
E 0.78 E ,*‘*/*T*i&ff‘{ffj/t
,,r/ff‘*/
0.76 0.7F - | o
_ -~ | BRSESSRSEE
- -7 ~ 10t D ek B
0.74 B Y U N= 0z IND102
N =10 ()(:0'2) N=10% I'N=10°
0.72 . . . ) 0.651 N=10' ‘ I ‘ i
o 1 2 3 4 5 0 1 2 3 4 5
Signal uncertainty, 3 Signal uncertainty, 8

Fig. 7. Probability of detection as a function of the signatertainty for Fig. 8. Probability of detection as a function of the signatertainty for
various convergence rates and sensing periods (withosengicertainty).  various convergence rates and sensing periods (with noisertainty).

The relative importance of noise and signal uncertainties L N=100,50R = ~292dB (w =051)
on the detection performance of ED is illustrated in Figure i
9. The operating pointY = 100 and SNR= —2.92 dB) 0.95F .
has been selected according to (3) in order to provide a el : [
minimum detection performance @, = 0.9 for Py, = s oo ot
0.01 (10log;pa = 0.0, 8 = 0). However, as appreciated, % 5 T
the real performance of ED is lower than the prediction 50'85’ FooE e
provided by (3). In the presence of noise uncertainty only 2z 08k
(10log,, = 0.1, 8 = 0), the detection probability decreases € ||]

- min . . o
to P, = 0.86. In the presence of s_|gnal uncertainty & 0.75H |f 4,7 — 0Tog..a =00 dB 5 =0
only (10log;oa = 0.0, 8 = 1), the detection performance —o—10logjpa =0.0dB, 3 =1, x =0.2

N . . P ——10log;pa=0.0dB, =1, x=0.5

experiences a more relevant degradation depending on the 0.7 ¢ —s—10logjga = 0.1 dB, # =0 i
convergence rate parameté? " = 0.80 for x = 0.5 and i DalT et by
P = 0.74 for y = 0.2), and becomes more severe in the ~ >®0 oot 005 0.1
presence of noise uncertainty0(og;, o = 0.1, 3 = 1), down Probability of false alarm

= mwn = min
toP, =0.76for x=05andP,  =0.71for x =0.2. Fig. 9. Receiver operating characteristic of an energyatetainder noise

The previous results indicate that the degrading effedh@f tand signal uncertainties.
signal uncertainty phenomenon can be of notable importance
and becomes more severe in the presence of noise uncertainty

even for very small noise power calibration errors. This apg gn example, Figure 10 shows th&™" required in a
highlights the importance of carefully taking into accomot \yorst-case design (with and without noise uncertainty) as a
oply the noise_ ungertainty p.henomenon.but qlso the primq%ction of the experienced, for a targetﬁéﬂm — 0.9 and
signal uncertainty in the design and configuration of SPBOIr 55qming a maximum expected primary signal variability of
sensing in real DSA/CR systems. £ = 1.0. The prediction of the classical theoretical result of
(4) is also shown, indicating the SNR valugs = ~/*"

C. Design and configuration of energy detection for which N7vn . equals10!, 102, 103 and 10*. As it can

To effectively achieve the desired, ", the required sens- P& appreciated, the required™" should be increased with
ing period N™i" should be computed taking into account nofiéspect to theNgud;. prediction, for which it has been
only the presence of noise uncertainty but also the pofent&own thatP (o) < Py . However, the required increment
primary signal variability (i.e., the signal uncertaintyp this depends on the convergence rate paramgtbeing greater for
end, the model of (12) constitutes a suitable tool and a mdgsver convergence rates and vice versa. This can be exglaine
adequate alternative than the classical theoretical teesiil by the fact thatP () increases withV, but faster for higher
(3) and (4). Notice that (12) and its simplified version canngonvergence ratesy( = 0.8,1.0), in which case a lower
be solved analytically forNV in closed form but they can increment of N™" may be enough to me@;m". Since the
be solved numerically in order to find the minimum sensingonvergence rate is related to the correlation among the
period required for a desired target performance undeowari primary signal samples-(or p), this means that the number
operating conditions. of additional signal samples required for loosely coresat
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fag ~ 09 Pra =001 5 =100 T =09 Pro = 0.0, 5 = 100 degradations, particularly in the presence of noise uaireyt
\ even for very small noise power calibration errors. Based on
\ . . .
10° 10logiga = 00dB| 05;\ Y\ 10loga = 0.1 dB] the proposed model, the design and configuration of spectrum
£ £ | sensing under both degrading effects has been discussed.
p=4 \ =z \'\/ ,\\
g 10} ERUN ST N .
b5 % % APPENDIX
> > N RELATION BETWEEN SIGNAL UNCERTAINTY AND
c L c L N 4
g 10 5 10 NN PEAK-TO-AVERAGE POWER RATIO
@ @ )
§ o § o \ The energy detection performance model developed in this
§ § 2 work quantifies the variability of a primary signal by mearfis o
@ Theoretical |- “x > Theoretical | %, . . . 2, 9
c f—, =00 N T —y=00 R the signal uncertainty parameter, defineddas o7 /3, where
10— —y=02 100 - —y=02 ~o and 03 represent the average SNR and the SNR variance,
- -x=08 - - x=08 . L
" y=10 " =10 respectwely. I_Determmmg th_e value of_ tlzﬂeparamet_er for a
0 159 79 29 a1 0 1273 27 22 particular radio technology is not straightforward in gee
SNR (dB) SNR (dB)

which hinders the application of the developed model. Alter
natively, the variability of a signal can also be characest
Fig. 10. RequiredV™*™ as a function of the experienced SNR withouthy means of the Peak-to-Average Power Ratio (PAPR), which
(101ogyo o = 0.0 dB) and with (0log, o = 0.1 dB) noise uncertainty. 5’ 5 \ve||-known parameter for many radio technologies. This
appendix derives a closed-form relation between the signal
samples is lower than for highly correlated samples under tjncertainty parametes and the PAPR in order to facilitate
same operating conditions. In fact, Figure 7 indicates thatN€ Practical application of the developed model.
small number of loosely correlated samplé§ & 10', y = The PAPRII, is equwalen.t to the ratio of the peak .SNR,
0.8) may result in the same detection performance as a largeax: to the a.ver'age' SNRy (i.e., IT = ,'Vmax/%)' According
number of highly correlated sampled (= 10%, x = 0.2). It to the SNR distribution model of (6)y is not upper-bounded
is worth noting, however, that low values for the inter-stenp (-6 Ymax — 00). However, a confidence interval can be
correlation can be associated to large sampling perfadas defined such that the SNR is below a certain maximum
discussed in Section IV-D, meaning that the absolute sgnsifftlUe Tmax With a sufficiently representative probability
period in time units might require a significant increase (f €g. ¢ = 0;95 or ¢ = 0.99). According .to this crlterlon., a'
both low and high correlation values) with respect to theigal 'ePresentative value fof,,, can be obtained by computing:
predicted by the classical theoretical results of (4). blorst I
case, Figure 10 indicates an increase by a factor from 2 t(g)mb(’y < Ymax) = o 7 (dy
4 with respect toN7" . under perfectly calibrated noise

classic . i erf ("/max_'yo) + erf ( Yo )
power and even several orders of magnitude for large sensing _ V20, V2o, ) _ ¢ (20)
periods under noise uncertainty, where the impact of theasig 1+ erf ( Yo )
uncertainty phenomenon becomes more severe. This numnerica V20,

example not only highlights the importance of carefullyitgk and then solving the resulting equation fgf.,, which yields:
into account both noise and signal uncertainties in thegdesi
7o
e —(1—¢)erf 21
e

of the spectrum sensing function of a DSA/CR network but, = —— ~ 4 V20, erf
also illustrates how the model proposed in this work can be

Making use of the equality = 343, the relation betweef?
and the PAPR follows from (21):

used to adequately configure ED in real DSA/CR systems.
< (1 —e¢)erf ( L >>
e—(l—e 1
V20

has widely been studied, the impact of the signal unceptain_}h It in (22 b dt ically d (t22) .
concept introduced in this work (inability to perfectly kmo € retsu. t'm (I ) cafnth € .usel 0 m:met”ca y et;rrmlne
beforehand the primary signals that might be present in tRQ?raC en(sj_lc tva Eeslo : eslgnf; unctir f'mt] y_palrallar'ra\%R
sensed band and their properties) has not been taken into GEloUs radio technologies based on their typica S
count in the analysis and performance evaluation of spectru

sensing in cognitive radio networks. In this context, anselia REFERENCES

on a generic mathematical expression for the received SNR| S. Haykin, “Cognitive radio: brain-empowered wirelessmenunica-
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