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Abstract—The inability to perfectly know the system noise
properties to infinite precision, referred to as noise uncertainty,
results in noise power calibration errors that have been proven
to impose fundamental limitations on the detection performance
of any spectrum sensing (signal detection) method in cognitive
radio networks. In this work we argue that the inability of
cognitive radio users to perfectly know beforehand the primary
signals that might be present in the sensed band and their
properties, referred to as signal uncertainty in this work, also
results in an additional detection performance degradation.
The noise uncertainty consequences have widely been studied,
verified experimentally and distilled into tractable mathematical
models. However, the potential effects of the particular primary
signal properties on the resulting detection probability of generic
spectrum sensing algorithms, such as energy detection, have
not been taken into account in the analysis and performance
evaluation of spectrum sensing in cognitive radio networks. In
this context, this work develops a mathematical model for signal
uncertainty and, based on such model, analyzes the impact
of signal uncertainty on the resulting detection performance
of spectrum sensing, with and without noise uncertainty, and
compares the practical consequences of both degrading effects.

Index Terms—Cognitive radio, spectrum sensing, energy de-
tection, noise uncertainty, signal uncertainty.

I. I NTRODUCTION

W HILE still early in its deployment, Dynamic Spec-
trum Access/Cognitive Radio (DSA/CR) [1]–[3] is

a highly promising communications paradigm that can ef-
fectively address the spectrum insufficiency problem, which
arises as a result of the existing conflicts between spectrum
demand growth and spectrum underutilization. DSA/CR aims
at improving spectrum usage efficiency by allowing some
unlicensed (secondary) users to access in an opportunistic
and non-interfering manner some licensed bands temporarily
unoccupied by the licensed (primary) users.

One of the most important challenges for a DSA/CR net-
work is not to cause harmful interference to primary users.
To guarantee interference-free spectrum access, secondary
users should reliably identify spectrum opportunities, which
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basically means being able to determine whether a primary
signal is present within a certain frequency range [4]. A
number of different signal detection methods, referred to as
spectrum sensingalgorithms in the context of DSA/CR, have
been proposed in the literature to identify the presence of
primary signal transmissions [5]–[7]. The existing solutions
provide different trade-offs between required sensing time,
complexity and detection capabilities, but their practical appli-
cability depends on how much information is available about
the primary user signal. In the most generic case, a DSA/CR
user is not expected to be provided with any prior information
about the primary signals that may be present within a certain
frequency band. When the secondary receiver cannot gather
sufficient information, the Energy Detection (ED) principle [8]
can be used due to its ability to work irrespective of the signal
format to detect. Despite its practical performance limitations,
ED has gained popularity as a spectrum sensing technique for
DSA/CR due to its general applicability and simplicity as well
as its low computational and implementation costs. ED has
been a preferred approach for many past spectrum sensing
studies and also constitutes the spectrum sensing method
considered in this work.

A recent study [9] based on empirical measurements of real
signals demonstrated that the detection performance of ED
may strongly vary with the primary radio technology being
detected. Certain technology-dependent inherent properties
may result in different detection performances for various
primary signals under the same conditions. In other words,
the detection probability for a fixed set of operating pa-
rameters might be enough to reliably detect some primary
signals but might not for some others, thus making some
radio technologies more susceptible to interferences under
the same operating conditions. The inability of a DSA/CR
user to perfectly know beforehand the primary signals that
might be present in the sensed band and their properties,
referred to assignal uncertaintyin this work, results in a
detection performance degradation since the non-interference
requirement for the secondary network implies a worst-case
design where secondary users must guarantee a minimum
detection performance regardless of the sensed primary signal.

While the consequences ofnoise uncertainty(i.e., the inabil-
ity to perfectly calibrate the system noise) have widely been
studied, experimentally verified and mathematically modeled
[10], [11], the impact of signal uncertainty on the detection
performance of spectrum sensing, which may have important
practical consequences as experimentally demonstrated in[9],
has not been studied and analyzed yet. The existing classical
theoretical results for ED describe the resulting probability of
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detection when the received primary signal is impaired by Ad-
ditive White Gaussian Noise (AWGN) or wireless propagation
environments such as Nakagami or Rayleigh fading channels
[12]. Nevertheless, the potential effect of the particularprimary
signal properties on the resulting detection probability of
generic spectrum sensing algorithms, such as ED, has not been
taken into account in the analysis and performance evaluation
of spectrum sensing in DSA/CR networks. In this context,
this work covers such deficiencies and fills the existing gaps
by developing a model for signal uncertainty and analyzing
its impact on the resulting detection performance of ED.
First, Section II reviews the operating principle and theoretical
fundamentals of ED under AWGN channels as well as the
consequences of noise uncertainty. Starting with these clas-
sical theoretical results, and after highlighting its necessity
in Section III, a model for signal uncertainty is developed
in Section IV based on theoretical reasonings complemented
with empirical approximations. Concretely, a generic math-
ematical expression for the received Signal-to-Noise Ratio
(SNR) distribution under variable primary transmission power
patterns is developed, which is then employed to derive the
average detection probability of ED under signal uncertainty.
Based on such model, Section V discusses and exemplifies
with numerical results the impact of signal uncertainty on the
detection performance of ED, and compares the degrading
effect of signal uncertainty with that of noise uncertainty.
Finally, Section VI summarizes the main conclusions derived
from this work.

II. T HEORETICAL PERFORMANCE OF ENERGY DETECTION

A. Spectrum sensing

The spectrum sensing problem can be formulated as a binary
hypothesis testing problem with the following two hypotheses:

H0 : y[n] = w[n] n = 1, 2, . . . , N
H1 : y[n] = x[n] + w[n] n = 1, 2, . . . , N

(1)

whereH0 is a null hypothesis stating that the received signal
samplesy[n] correspond to noise samplesw[n] and therefore
there is no primary signal in the sensed spectrum band, and
hypothesisH1 indicates that some licensed user signalx[n] is
present.N denotes the number of samples collected during the
signal observation interval (i.e., the sensing period), emphasiz-
ing that the decision is made based on a limited number of sig-
nal samples. The ideal spectrum sensor would select hypothe-
sisH1 whenever a primary signal is present and hypothesisH0

otherwise. Unfortunately, spectrum sensing algorithms may
fall into mistakes in practice, which can be classified intomiss
detectionsand false alarms. A miss detection occurs when a
primary signal is present in the sensed band and the spectrum
sensing algorithm selects hypothesisH0, which may result in
harmful interference to primary users. On the other hand, a
false alarm occurs when the sensed spectrum band is idle and
the spectrum sensing algorithm selects hypothesisH1, which
results in missed transmission opportunities and therefore
in a lower spectrum utilization. Based on these definitions,
the performance of any spectrum sensing algorithm can be
summarized by means of two probabilities: the probability

of miss detectionPmd = P (H0/H1), or its complementary
probability of detectionPd = P (H1/H1) = 1−Pmd, and the
probability of false alarmPfa = P (H1/H0). LargePd and
low Pfa values would be desirable. Nevertheless, there exists
a trade-off betweenPd andPfa, meaning that improving one
of the performance metrics implies degrading the other one.

B. Energy detection

The ED principle, also referred to asradiometric detection,
measures the energy received on a primary band during an
observation interval and declares the band as busy if the
measured energy is greater than a properly set predefined
threshold, or idle otherwise [8]:

T(y) =

N∑

n=1

|y[n]|2
H1

≷
H0

λ (2)

whereT(y) is the ED test statistic computed over the signal
vector y = (y[1], y[2], . . . , y[N ]), and λ is a fixed decision
threshold to distinguish between the two hypotheses in (1).

The decision thresholdλ could be chosen for an optimum
trade-off betweenPd and Pfa. However, this would require
knowledge of the noise and detected signal powers. While the
noise power can be estimated with relatively simple methods
[13], the estimation of the signal power, which depends on
many varying factors such as transmission and propagation
characteristics, involves the use of complex and computation-
ally costly methods. In practice, the threshold is normally
chosen to satisfy a certainPfa [14], which only requires
the noise power to be known. For a Constant False-Alarm
Rate (CFAR) threshold-setting approach [14], the detection
probability of ED under AWGN channels as a function of the
SNR, denoted asγ, is given by [15]:

Pd(γ) = Q
(
Q−1(Pfa)

√
2N −Nγ√

2N(1 + γ)

)
(3a)

≈ Q
(
Q−1(Pfa)−

√
N

2
γ

)
(3b)

where Q(·) is the standard Gaussian tail probabilityQ-
function [16, (26.2.3)]. The approximation of (3b) assumes
the case of low SNR regime in DSA/CR (γ ≪ 1).

C. Noise uncertainty

Calibration errors as well as changes in thermal noise caused
by temperature variations limit the accuracy to which noise
power can be estimated, leading to some noise uncertainty.
In practice, the noise power is therefore uncertain within a
certain interval [17]. Let’s assume the noise uncertainty model
σ̂2
w ∈ [σ2

w, ασ
2
w] [18], whereσ̂2

w represents the estimated noise
power,σ2

w is the nominal noise power andα > 1 is the noise
uncertainty. Based on the estimated noise powerσ̂2

w, the worst-
case (̂σ2

w = ασ2
w) detection probability given by (3) becomes:

Pd(γ) = Q
(
αQ−1(Pfa)

√
2N −N(γ + 1− α)√
2N(1 + γ)

)
(4a)

≈ Q
(
αQ−1(Pfa)−

√
N

2
(γ + 1− α)

)
(4b)
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Fig. 1. Theoretical and experimental performance of energy detection without
noise uncertainty.
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Fig. 2. Theoretical and experimental performance of energy detection with
1-dB noise uncertainty.

Equations (3) and (4) are graphically shown as light thick
lines in Figures 1 and 2, respectively. As appreciated, noise
uncertainty imposes fundamental limitations on detection
performance. Although classical detection theory states that
degradation in the detection performance due to reduced SNR
can be countered by increasing the sensing time [19], [20] (see
Figure 1), in practice there exists a limit referred to asSNR
wall (see Figure 2), which is given byγwall = α − 1 [18],
below which the primary signal cannot reliably be detected no
matter how long the sensing period is [10], [11]. The existence
of SNR walls has been verified experimentally [9], [21], [22],
demonstrating that a small noise power estimation error may
cause significant performance loss in ED.

III. E MPIRICAL PERFORMANCE OF ENERGY DETECTION

Figures 1 and 2 show the experimental performance of the
ED method when applied to real-world primary signals of
various radio technologies, including analogical and digital
TV, DAB-T, TETRA, E-GSM 900, DCS 1800 and UMTS. A

detailed and in-depth description of the measurement platform
as well as the measurement and evaluation methodologies
employed to obtain these results can be found in [9].

Two important aspects in Figures 1 and 2 are noteworthy.
First, the experimental results indicate that the ED perfor-
mance may notably vary with the radio technology being
detected. This behavior is not predicted by the classical
theoretical results associated to ED, which were presentedin
Section II. As a matter of fact, for a given set of operating
parameters (targetPfa, sample lengthN , SNR γ and noise
uncertaintyα) the expressions in (3) and (4) suggest that the
resulting performance in terms ofPd is unique. However,
Figures 1 and 2 clearly demonstrate that the experimental
Pd may strongly depend on the primary signal being sensed.
Second, the performance differences among various radio
technologies are not constant, but depend on the sensing
period N . Summarizing the analysis and discussion of [9],
this behavior can be explained as follows. IfN is suffi-
ciently low, the ED test statistic may follow the instantaneous
variations of the received signal energy. Under the same
average SNR conditions (i.e., signals with the same average
energy, assuming constant average noise energy), this means
that a higher signal energy variability (variance) impliesa
higher probability that the instantaneous energy level (and
the ED test statistic) falls below the decision threshold. In
such a case, the channel would be declared as idle even if
it should be declared as busy, thus resulting in a degraded
detection performance. Since various radio technologies may
exhibit different signal energy variation patterns and variances,
this explains the different detection performances observed
in Figures 1 and 2. AsN increases, the test statistics are
computed over longer observation periods, thus averaging the
peculiarities of any instantaneous energy variation pattern and
reducing its variance. In such a case, although the variability of
the received energy remains the same, the variability of thetest
statistic decreases and so does the probability of misdetecting
the primary signal. For sufficiently long observation periods,
the test statistic ceases to follow the instantaneous signal
energy variations and its value closely resembles the true
signal energy. When this occurs for all the considered signals,
the obtained performance curves converge. This explains the
convergent trend observed in Figures 1 and 2 asN increases.

The discussion above indicates that the variability (variance)
of the primary transmission power pattern may notably affect
the ED performance1. The potential effect of this particular
primary signal property on the resulting detection performance
has not been studied and cannot be predicted with the existing
analytical results. A novel model is developed in Section IV.

1The variability of the received power might be ascribed to thepropaga-
tion environment where the measurements were performed and the fading
properties of the channel. However, it is worth noting that the measurement
conditions were carefully selected to minimize the impact of fading and
the empirical data were carefully analyzed and selected to ensure that the
transmission power pattern was the dominant aspect in the variability of the
received power (see [9] for details on the measurements and methodological
aspects). In fact, the resulting detection performance for signals with perfectly
constant transmission power patterns (e.g., digital TV) agrees with the
theoretical prediction for an AWGN channel (i.e., a channel with no fading
where the SNR is constant). Therefore, the variation of the received power
due to the channel fading was not significant in the field measurements.
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IV. SIGNAL UNCERTAINTY MODEL

A. Problem formulation

In practice, the SNR is not constant at the secondary receiver
since it is the result of the combined effects of the primary
transmission power pattern and the propagation environment.
As a result, the probability of detection instantaneously varies
with the receiving SNR. In such a case, (4) gives the probabil-
ity of detectionPd conditioned on the instantaneous value of
γ. Under varying SNR, a more useful performance parameter
is the average probability of detectionP d experienced for an
average SNRγ0, which may be derived by averaging (4) over
the SNR statistics:

P d(γ0) = E [Pd(γ)] =

∫

γ

Pd(γ)fγ(γ)dγ (5)

where Pd(γ) is given by (4) andfγ(γ) is the Probability
Density Function (PDF) of the received SNR. Closed-form ex-
pressions for the integral in (5) under Nakagami and Rayleigh
fading environments have been derived in the literature [12]
in order to reflect the impact of radio propagation channels
on the resulting detection performance of ED. In contrast, the
focus of this work is on the impact of the primary transmission
power pattern. Therefore, it will be assumed thatfγ(γ) is
mostly the result of the primary transmission power pattern,
which was shown in Section III and demonstrated in [9] to
strongly impact the ED performance. The particular shape
of fγ(γ), and hence the detection performanceP d(γ0), will
depend on the primary transmission power pattern and its
variability (variance). The main objective of this sectionis
to solve (5) to establish a direct relation between the primary
power variability and the resulting detection performanceof
ED. To this end, a model forfγ(γ) is required, which is
developed in Section IV-B.

B. Approximation for the SNR statistics

From a realistic point of view, it is reasonable to assume that
fγ(γ) cannot be perfectly known in practice. Determining an
exact expression for the distribution of received SNR values,
fγ(γ), would require a perfect knowledge of the transmission
power statistics, which are in general unknown and cannot
easily be determined in reality since they may depend on many
factors such as the particular radio technology being detected
and its signaling format as well as the instantaneous conditions
of the primary network (e.g., a cellular mobile communication
system with load-based power control). Even if the transmis-
sion power statistics of any primary radio technology could
be assumed to be known, the obtained expression forfγ(γ)
would be valid for a single radio technology, thus requiringa
separate analysis for every possible primary radio technology
to be detected. Such analysis would result impractical.

As an alternative, and given that deriving an individual
analytical expression offγ(γ) for every possible case is
infeasible, this section is aimed at developing a general,
technology-independent approximated expression that canbe
determined without a perfect knowledge of the primary trans-
mission power statistics and that can be used to describe the
distribution of the received SNR values over a wide range

of cases with a reasonable level of accuracy. This approach
would be valid as long as the resulting expression in (5)
is able to describe, with a sufficient level of accuracy, the
experimental probability of detection and the performance
differences observed in Figures 1 and 2 for real-world signals
of different radio technologies.

In order to find a realistic model forfγ(γ), the empirical
SNR PDFs of various real-world signals were computed based
on the measurements performed in [9] for different radio
technologies (analogical/digital TV, DAB-T, TETRA, E-GSM
900, DCS 1800 and UMTS). For each individual signal of
each measured radio technology, the obtained empirical PDF
was compared to a wide range of PDF models (Figure 3 shows
some examples for selected signals). It was found that most
of the empirical PDFs could acceptably be approximated by
either Rayleigh distributionsfR

γ (γ) = (γ/s2) exp(−γ2/2s2),
γ ≥ 0 (Figure 3(a) shows an example) or gamma distributions
fG
γ (γ) = (γk−1/θkΓ(k)) exp(−γ/θ), γ ≥ 0, with k = 2

(Figure 3(b) shows an example). For these distributions, the
parameterss and θ can be computed ass =

√
2/π γ0 =√

2σ2
γ/(4− π) and θ = γ0/2 =

√
σ2
γ/2 [23], where γ0

and σ2
γ represent the average SNR and the SNR variance,

respectively. The values ofγ0 andσ2
γ for the captured signals

were respectively estimated as the sample mean and sample
variance of the instantaneously received SNR values after
normalizing the signal sequences as detailed in [9]. Based on
such estimations, the corresponding PDF models were derived
based on eitherγ0 (denoted asmean-based) or σ2

γ (denoted
asvariance-based). As it can be observed in Figures 3(a) and
3(b), the Rayleigh and gamma distributions provide reasonably
good fits for empirical SNR PDFs observed in reality and
could be considered as models for the SNR distributionfγ(γ).

For the Rayleigh and gamma distributions, the SNR mean
and variance are related asσ2

γ = (4/π − 1) γ2
0 ≈ 0.27 γ2

0 for
the former andσ2

γ = 0.5 γ2
0 for the latter [23]. This indicates

the existence of a relation of the formσ2
γ = βγ2

0 in practice,
where β = σ2

γ/γ
2
0 > 0 can be regarded as a normalized

variance and thus as a metric representing the variability of
the primary transmission power pattern. As mentioned before,
the aim is to establish a direct relation between the primary
power variability, which can be quantified by means ofβ, and
the resulting detection performanceP d(γ0). In the case of
the Rayleigh and gamma distributions, the value ofβ is fixed
(β ≈ 0.27 for the former,β = 0.5 for the latter). This means
that the resulting expression forP d(γ0) in such cases would
not allow to analyze the ED performance for any arbitrary
primary power variabilityβ, but only for those cases where
the received SNR can adequately be modeled with a Rayleigh
or gamma distribution. This observation motivates the search
of an alternative model forfγ(γ) whereβ can be configured
in order to analyze the impact of arbitrary primary power
variabilities (variances) on the detection performanceP d(γ0).
A simple and analytically tractable PDF model verifying this
property is the Gaussian distribution, where the variance is
independent of the mean. It is important to note, however, that
the Gaussian PDF is defined for any real value whileγ ≥ 0.
This issue can be resolved by truncating the Gaussian PDF to
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Fig. 3. Examples of empirical and approximated PDFs of the received SNR
for selected signals from field measurements (numbers between square brack-
ets represent the Kolmogorov-Smirnov distance to the empirical distribution).

positive values and introducing a normalization factorκ such
that

∫∞
0

fγ(γ)dγ = 1. This results in the following SNR PDF
model [24, Appendix A]:

fMG
γ (γ) ≈ κ√

2πσγ

e
− 1

2

(

γ−γ0

σγ

)

2

, γ ≥ 0 (6)

where the normalization factor is given byκ = 2/[1 +
erf(γ0/

√
2σγ)], with erf(·) being the error function [16,

(7.1.1)]. Whileσ2
γ andγ0 seem to be mathematically indepen-

dent parameters in (6), the analysis of empirical data reveals
that the relationσ2

γ = βγ2
0 (with β > 0) also holds here. Note

that σ2
γ and γ0 cannot be independent in practice as a result

of the boundγ ≥ 0 (e.g., a low mean valueγ0 cannot be
associated with an arbitrarily large varianceσ2

γ). The main
advantage of this model with respect to the Rayleigh and
gamma models is that the resulting expression forP d(γ0) will
be obtained as a function ofβ, thus enabling the performance
analysis of ED for any arbitrary primary power variability.
The exact value ofβ can be assumed to be unknown to
the secondary receiver due to the inability of a secondary
user to perfectly know beforehand the primary signals that
might be present in the sensed band and their properties. This
parameter will henceforth be referred to assignal uncertainty.
The validity of this model is corroborated in Figure 3. For
the cases where the received SNR can be approximated by
Rayleigh distributions (Figure 3(a)) or gamma distributions
(Figure 3(b)), the model of (6) provides a reasonable fit.
Moreover, it is interesting to mention that, for some cases
where the empirical value ofβ is neither 0.27 (Rayleigh
case) nor 0.5 (gamma case), the proposed model is able to
provide more accurate fits, as illustrated in the example of
Figure 3(c). In a few particular cases none of the considered

approximations is perfect although all of them are able to
qualitatively describe the empirical SNR distribution (Figure
3(d)). In conclusion, the model of (6) can be employed to
mathematically describe, in an approximated but acceptable
manner, the empirical distribution of received SNR values.

C. Approximation for the probability of detection

To facilitate the analytical resolution of (5) with the pro-
posed SNR PDF models, the termPd(γ) is approximated as
follows. According to (4),Pd(γ) can be expressed as:

Pd(γ) = Q (ζ(γ)) (7)

whereζ(γ) is given by:

ζ(γ) =
αQ−1(Pfa)

√
2N −N(γ + 1− α)√
2N(1 + γ)

(8a)

≈ αQ−1(Pfa)−
√

N

2
(γ + 1− α) (8b)

The GaussianQ-function can be approximated by a second-
order exponential function:

Q(x) ≈ e−(ax2+bx+c), x ≥ 0 (9)

with fitting coefficientsa = 0.3845, b = 0.7635 and c =
0.6966 [25]. Notice thatζ(γ), the argument of theQ-function
in (7), may take both positive and negative values even though
γ ≥ 0 (see (8)). Since the approximation in (9) is valid for
positive arguments only, the propertyQ(x) = 1−Q(−x) must
therefore be used for negative values ofζ(γ). Applying this
approximation to (7) it finally yields:

Pd(γ) = Q (ζ(γ)) ≈





e−(a[ζ(γ)]2+b ζ(γ)+c)

= e−(Ωγ2+Ψγ+Φ), ζ(γ) ≥ 0

1− e−(a[ζ(γ)]2−b ζ(γ)+c)

= 1− e−(Ωγ2+Ξγ+Θ), ζ(γ) ≤ 0
(10)

whereζ(γ) ≥ 0 ⇒ γ ≤ ξ, ζ(γ) ≤ 0 ⇒ γ ≥ ξ, and:

Ω =
aN

2
(11a)

Ψ = − aαQ−1(Pfa)
√
2N − aN(α− 1)− b

√
N

2
(11b)

Ξ = − aαQ−1(Pfa)
√
2N − aN(α− 1) + b

√
N

2
(11c)

Φ = a

[
αQ−1(Pfa) +

√
N

2
(α− 1)

]2

+ b

[
αQ−1(Pfa) +

√
N

2
(α− 1)

]
+ c (11d)

Θ = a

[
αQ−1(Pfa) +

√
N

2
(α− 1)

]2

− b

[
αQ−1(Pfa) +

√
N

2
(α− 1)

]
+ c (11e)

ξ = α

√
2

N
Q−1(Pfa) + α− 1 (11f)
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P
MG

d (γ0) =

∫

γ

Pd(γ)f
MG
γ (γ)dγ (12a)

≈ κ√
2πσγ

[∫ ξ

0

e−(Ωγ2+Ψγ+Φ)e
− 1

2

(

γ−γ0

σγ

)

2

dγ +

∫ ∞

ξ

[
1− e−(Ωγ2+Ξγ+Θ)

]
e
− 1

2

(

γ−γ0

σγ

)

2

dγ

]
(12b)

≈ κ

2
erfc

(
ξ − γ0√
2σγ

)
+

κ

2

√
1

2σ2
γΩ̃

exp

(
Ψ̃2

4Ω̃
− Φ̃

)[
erf

(
2Ω̃ξ + Ψ̃

2
√
Ω̃

)
− erf

(
Ψ̃

2
√
Ω̃

)]

− κ

2

√
1

2σ2
γΩ̃

exp

(
Ξ̃2

4Ω̃
− Θ̃

)
erfc

(
2Ω̃ξ + Ξ̃

2
√
Ω̃

)
(12c)

P
R,G

d (γ0) ≈ Υ(γ0) +
1

υ2

Ψ̄

4

√
π

Ω̄3
exp

(
Ψ̄2

4Ω̄
− Φ

)[
erf

(
Ψ̄

2
√
Ω̄

)
− erf

(
2Ω̄ξ + Ψ̄

2
√
Ω̄

)]

+
1

υ2

Ξ̄

4

√
π

Ω̄3
exp

(
Ξ̄2

4Ω̄
−Θ

)
erfc

(
2Ω̄ξ + Ξ̄

2
√
Ω̄

)
+

1

υ2

e−Φ − e−(Ω̄ξ2+Ψ̄ξ+Φ) − e−(Ω̄ξ2+Ξ̄ξ+Θ)

2Ω̄
(13)

D. Closed-form expressions

Substituting the approximations of (6) and (10) into (5)
yields (12), whereΩ̃ = Ω + 1/2σ2

γ , Ψ̃ = Ψ − γ0/σ
2
γ ,

Ξ̃ = Ξ − γ0/σ
2
γ , Φ̃ = Φ + γ2

0/2σ
2
γ , Θ̃ = Θ + γ2

0/2σ
2
γ and

erfc(·) is the complementary error function [16, (7.1.2)]. The
two last terms of (12c) lead to similar numerical values and
approximately cancel out each other. The result of (12) could
therefore be simplified to:

P
MG

d (γ0) ≈
κ

2
erfc

(
ξ − γ0√
2σγ

)
=

erfc
(

ξ−γ0√
2σγ

)

1 + erf
(

γ0√
2σγ

) (14)

This approximation is valid over a wide range of SNR values
and tighter for highN and lowPfa values.

For comparison purposes, (5) was also solved when the SNR
follows Rayleigh and gamma distributions. In such cases, the
resulting detection probability is given by (13), whereΥ(γ0) =
exp(−(π/4)(ξ/γ0)

2), υ =
√
2/π γ0, Ω̄ = Ω+π/4γ2

0 , Ψ̄ = Ψ
and Ξ̄ = Ξ for the Rayleigh distribution, whileΥ(γ0) = (1+
2ξ/γ0) exp(−2ξ/γ0), υ = γ0/2, Ω̄ = Ω, Ψ̄ = Ψ + 2/γ0 and
Ξ̄ = Ξ+2/γ0 for the gamma distribution. As in (12c), the last
terms of (13) approximately cancel out each other, leading to
the approximation

P
R

d (γ0) ≈ exp

(
−π

4

(
ξ

γ0

)2
)

(15)

for the Rayleigh case and

P
G

d (γ0) ≈
(
1 +

2ξ

γ0

)
exp

(
−2ξ

γ0

)
(16)

for the gamma case.
Figure 4 compares (4), (12) and (13). The resulting proba-

bility of detection for primary signals whose received SNR can
be modeled as a gamma distribution is lower than that obtained
for primary signals with Rayleigh SNR distributions. This can
be explained by the fact thatσ2

γ ≈ 0.27 γ2
0 (β ≈ 0.27) for the

Rayleigh case whileσ2
γ = 0.5 γ2

0 (β = 0.5) for the gamma

case. In other words, for a given average SNR, the gamma dis-
tribution is characterized by a higher variance. This suggests
that a higher signal variability can therefore be associated to
a lower detection performance. In fact, the results obtained
with the modified Gaussian model indicate, under constant
operating conditions, that the detection performance degrades
as the primary signal variabilityβ increases2, which is in
accordance with the experimental results observed in Section
III. In the opposite direction, (12) converges numericallyto (4)
as the signal variability decreases. This can also be predicted
analytically since:

lim
β→0

P
MG

d (γ0) = lim
σγ→0

∫

γ

Pd(γ)
κ√
2πσγ

e
− 1

2

(

γ−γ0

σγ

)

2

dγ

=

∫

γ

Pd(γ)δ(γ − γ0)dγ = Pd(γ0) (17)

where Pd(γ) is given by (4) andδ(·) is the Dirac delta
function, which can be expressed as the limit of a Gaussian
PDF as its standard deviation tends to zero. For a constant-
power transmitter, the received SNR is constant (neglecting the
channel propagation effects), meaning that the instantaneous
SNRγ equals the average valueγ0 at any time, and in such a
case (4) and (12) coincide. It is also worth noting in Figure 4
that the proposed model withβ = 0.27 (which corresponds to
a Rayleigh distribution), results in a detection probability that
is quite similar to that obtained for Rayleigh SNR distributions,
indicating that the proposed model is able to describe, with
reasonable accuracy, the experimental probability of detection
observed for real-world signals.

2Under sufficiently low SNR conditions, a higher signal variability implies
a higher probability that the received signal power is abovethe decision
threshold, and hence a higher detection probability as observed in the left-
most part of the curves in Figure 4. However, spectrum sensingis designed
to operate in the regions of high detection probability (i.e., the right-most
part of the curves), where the detection performance degrades as the signal
variability increases. Therefore, from a practical viewpoint, an increased signal
variability results in a degraded detection performance.
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when the SNR is modeled as modified Gaussian (β ∈ [0.01, 0.27]), Rayleigh
and gamma distributions.

E. Impact of the sensing period

The model of (12) is able to describe the impact of the
primary signal variabilityβ on the resulting detection per-
formance of ED. However, the convergent trend observed in
Figures 1 and 2 as the sensing periodN increases (discussed
in Section III) is not described by (12). This phenomenon
can be modeled as an effective reduction of the primary
signal variability β as N becomes larger, which can be
expressed asσ2

γ = β τ(N) γ2
0 , where τ(N) ∈ (0, 1] is a

monotonically decreasing function ofN . An expression for
τ(N) can be derived as follows. The ED test statisticT(y) as
defined in (2) represents the received primary signal energy
in a sensing interval ofN samples. The received signal
power can therefore be obtained asT(y)/N . Notice that the
term |y[n]|2 in (2) is directly related to the instantaneous
signal energy/power and the instantaneous SNR. Its variance
Var(|y[n]|2) = Var ([T(y)/N ]|N=1) is therefore associated to
σ2
γ , the variance of the instantaneous SNR. The reduction of

the effective SNR variance asN increases,τ(N), can therefore
be determined based on the variance of the test statistic as:

τ(N) =

Var

(
T(y)
N

∣∣∣
N≥1

)

Var
(

T(y)
N

∣∣∣
N=1

) (18)

Both variances are related as [26, (2.21)]:

Var

(
1

N

N∑

n=1

|y[n]|2
)

=
1

N2

N∑

n=1

Var
(
|y[n]|2

)

+
1

N2

N∑

m=1

N∑

n=1
n6=m

Cov
(
|y[m]|2 , |y[n]|2

)

= Var
(
|y[n]|2

)( 1

N
+

N − 1

N
ρ

)

(19)
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Fig. 5. Empirical and approximated results forρ andτ(N).

where it has been assumed that the samples|y[n]|2 have equal
variance (i.e.,σ2

γ is constant along time) andρ represents the
average correlation of distinct samples. According to (19),
τ(N) ≈ (1/N) + ρ (N − 1)/N . In practice, however, the
correlation coefficientρ is not completely independent of
the sensing periodN . Based on the empirical measurements
performed in [9], and by means of curve fitting procedures,
it was verified that the resulting empirical values of the
average correlation coefficient can accurately be approximated
asρ ≈ (Nr − 1) / (N − 1), with r being a fitting coefficient.
Introducing this approximation into (19) yieldsτ(N) ≈ N−χ,
with χ = 1 − r, which was proven to describe experimental
results reasonably well (see Figure 5). The parameterχ
determines the rate at which the detection performance for
various radio technologies converge asN increases, and it
will henceforth be referred to as theconvergence rate. Notice
thatχ andr are related to the correlation coefficientρ3, which
means that the pace at which the detection performance for
various radio technologies converge asN increases in practice
depends not only on the number of signal samples collected
during the sensing period,N , but also on the correlation
among them, which in turn depends on the sampling rate
at which the samples are collected and its relation with
the primary signal dynamics in the time domain. LetTs

denote the sampling period (i.e., the time period between two
consecutive signal samples). It is reasonable to assume that the
correlation between two consecutive signal samples decreases
asTs → ∞. If Ts is sufficiently large to assume thatρ ≈ 0,
then r ≈ 0 and τ(N) ≈ 1/N , which is the maximum rate at
which the detection performance can converge asN increases
(χ = 1). On the other extreme, for completely correlated
samples (ρ ≈ 1), which corresponds toTs → 0, r ≈ 1
and τ(N) ≈ 1, meaning that in such a case the detection
performance for various primary signals would not converge
(χ = 0), no matter how large the sensing periodN is (the
trend would be as observed in Figure 4).

3In fact, it is interesting to note thatr = 0 for ρ = 0, r = 1 for ρ = 1,
andr → ρ asN → 1.
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Summarizing the results of this section, the detection per-
formance of ED under variable primary transmission power
patterns can be modeled as indicated by (12), where the
average SNRγ0 and the SNR varianceσ2

γ are related as
σ2
γ = β N−χ γ2

0 . The signal uncertainty parameter,β ≥ 0,
represents the variability of the primary transmission power,
while the convergence rate parameter,χ ∈ [0, 1], determines
the pace at which the detection performance for various
primary signals converge asN increases, and it is related to
the correlation among the signal samples.

F. Model validation

The overall model is validated in Figure 6, where the
experimental detection performance of ED is compared with
the theoretical prediction of (4) as well as the performance
predicted by the model of (12) based on the values ofβ
and χ derived from empirical measurements. The results
are shown forN = 100 and 1-dB noise uncertainty. As
opposed to the classical theoretical result of (4), which predicts
the same detection performance for all the considered radio
technologies, the proposed model is capable to capture and re-
produce the impact of the variability of different transmission
power patterns on the experimental performance of ED, thus
providing a more accurate estimation of the real performance
of ED in practice.

V. SIGNAL AND NOISE UNCERTAINTIES

Based on the model developed in Section IV, this section
analyzes the impact of the unknown primary power variability
(signal uncertainty) on the detection performance of ED, with
and without noise uncertainty, and compares the practical
consequences of both degrading effects. The design and con-
figuration of ED is discussed as well.

A. Performance analysis without noise uncertainty

The maximum interference constraint for a DSA/CR net-
work can be mapped to a minimum detection probability

requirement that must be satisfied for SNR values above a
predefined thredhold, i.e.P d(γ0) ≥ P

min

d for all γ0 ≥ γmin
0 .

Let’s assume that the DSA/CR system is designed to guarantee
P

min

d = 0.9 at a givenγmin
0 . This requirement implies a

minimum sensing period for the DSA/CR network,Nmin,
which could be estimated as a function ofγmin

0 based on
the classical result of (3) (α = 1 in (4), assuming a perfectly
cabrilated noise power), denoted asNmin

classic. Based on this
discourse, the equalityP d(γ0) = P

min

d should be true for
N = Nmin

classic. To verify this statement, and based on the
model of (12), Figure 7 plots the resultingP d(γ0) at the SNR
valuesγ0 = γmin

0 for whichNmin
classic equals101, 102, 103 and

104, when the target probability of detection isP
min

d = 0.9
andN = Nmin

classic. As it can be appreciated, whenNmin is
computed based on (3), the equalityP d(γ0) = P

min

d holds
for constant-power transmitters only (β → 0). For primary
signals of uncertain power variability (β > 0), the resulting
P d(γ0) is lower than the targetP

min

d = 0.9. It is interesting
to note thatP d(γ0) first decreases belowP

min

d as the primary
signal variabilityβ increases, but after reaching a minimum
value it increases again. Ifβ were made arbitrarily large,
P d(γ0) would also increase. However, it is worth noting that
the maximum signal variability observed empirically in the
measurements performed in [9] wasβ = 2.29. This indicates
that for practical values ofβ, the resultingP d(γ0) is lower
thanP

min

d and the signal uncertainty phenomenon always is
a degrading effect in practice, as illustrated in Figure 7 for
various operating parameters. It is also interesting to note
that the minimum value ofP d(γ0) is reached at different
values ofβ (depending on the operating parameters), but it is
always constant. In fact, it was verified that forP

min

d ≥ 0.9,
the worst-case performance ismin

{
P d(γ0)

}
≈ 0.8 · P min

d ,
meaning that the worst detection probability is about 80% of
the target value (this is however an optimistic estimation based
on the no noise uncertainty assumption). This means that if
signal uncertainty is not taken into account and the spectrum
sensing function of a DSA/CR network is designed according
to the classical result of (3), then there would be a potential
and unacceptable risk of interference to the primary system.

B. Performance analysis with noise uncertainty

The results of Figure 7 correspond to the ideal case of no
noise uncertainty, which is never true in reality. Let’s consider
that the DSA/CR devices are assumed to operate with a small
noise power calibration error (10 log10 α = 0.1 dB) andNmin

is selected accordingly based on (4). In this case, the compari-
son of Figures 7 and 8 indicates that the detection performance
degradation due to the signal uncertainty phenomenon may
become more severe in the presence of noise uncertainty.
The most unfavorable case corresponds to low convergence
rates, where the worst-case detection performance decreases
asN increases (see Figure 8). This aspect should carefully be
considered in the design of DSA/CR systems since DSA/CR
devices are expected to operate in low SNR regimes, where
the required sensing time intervals can usually be high, andin
the unavoidable presence of noise uncertainty.
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The relative importance of noise and signal uncertainties
on the detection performance of ED is illustrated in Figure
9. The operating point (N = 100 and SNR= −2.92 dB)
has been selected according to (3) in order to provide a
minimum detection performance ofP

min

d = 0.9 for Pfa =
0.01 (10 log10 α = 0.0, β = 0). However, as appreciated,
the real performance of ED is lower than the prediction
provided by (3). In the presence of noise uncertainty only
(10 log10 α = 0.1, β = 0), the detection probability decreases
to P

min

d = 0.86. In the presence of signal uncertainty
only (10 log10 α = 0.0, β = 1), the detection performance
experiences a more relevant degradation depending on the
convergence rate parameter (P

min

d = 0.80 for χ = 0.5 and
P

min

d = 0.74 for χ = 0.2), and becomes more severe in the
presence of noise uncertainty (10 log10 α = 0.1, β = 1), down
to P

min

d = 0.76 for χ = 0.5 andP
min

d = 0.71 for χ = 0.2.
The previous results indicate that the degrading effect of the

signal uncertainty phenomenon can be of notable importance
and becomes more severe in the presence of noise uncertainty,
even for very small noise power calibration errors. This
highlights the importance of carefully taking into accountnot
only the noise uncertainty phenomenon but also the primary
signal uncertainty in the design and configuration of spectrum
sensing in real DSA/CR systems.

C. Design and configuration of energy detection

To effectively achieve the desiredP
min

d , the required sens-
ing periodNmin should be computed taking into account not
only the presence of noise uncertainty but also the potential
primary signal variability (i.e., the signal uncertainty). To this
end, the model of (12) constitutes a suitable tool and a more
adequate alternative than the classical theoretical results of
(3) and (4). Notice that (12) and its simplified version cannot
be solved analytically forN in closed form but they can
be solved numerically in order to find the minimum sensing
period required for a desired target performance under various
operating conditions.
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As an example, Figure 10 shows theNmin required in a
worst-case design (with and without noise uncertainty) as a
function of the experiencedγ0 for a targetP

min

d = 0.9 and
assuming a maximum expected primary signal variability of
β = 1.0. The prediction of the classical theoretical result of
(4) is also shown, indicating the SNR valuesγ0 = γmin

0

for which Nmin
classic equals101, 102, 103 and 104. As it can

be appreciated, the requiredNmin should be increased with
respect to theNmin

classic prediction, for which it has been
shown thatP d(γ0) ≤ P

min

d . However, the required increment
depends on the convergence rate parameterχ, being greater for
lower convergence rates and vice versa. This can be explained
by the fact thatP d(γ0) increases withN , but faster for higher
convergence rates (χ = 0.8, 1.0), in which case a lower
increment ofNmin may be enough to meetP

min

d . Since the
convergence rateχ is related to the correlation among the
primary signal samples (r or ρ), this means that the number
of additional signal samples required for loosely correlated
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samples is lower than for highly correlated samples under the
same operating conditions. In fact, Figure 7 indicates thata
small number of loosely correlated samples (N = 101, χ =
0.8) may result in the same detection performance as a large
number of highly correlated samples (N = 104, χ = 0.2). It
is worth noting, however, that low values for the inter-sample
correlation can be associated to large sampling periodsTs as
discussed in Section IV-D, meaning that the absolute sensing
period in time units might require a significant increase (for
both low and high correlation values) with respect to the value
predicted by the classical theoretical results of (4). In the worst
case, Figure 10 indicates an increase by a factor from 2 to
4 with respect toNmin

classic under perfectly calibrated noise
power and even several orders of magnitude for large sensing
periods under noise uncertainty, where the impact of the signal
uncertainty phenomenon becomes more severe. This numerical
example not only highlights the importance of carefully taking
into account both noise and signal uncertainties in the design
of the spectrum sensing function of a DSA/CR network but
also illustrates how the model proposed in this work can be
used to adequately configure ED in real DSA/CR systems.

VI. CONCLUSION

While the noise uncertainty phenomenon (inability to per-
fectly know the system noise properties to infinite precision)
has widely been studied, the impact of the signal uncertainty
concept introduced in this work (inability to perfectly know
beforehand the primary signals that might be present in the
sensed band and their properties) has not been taken into ac-
count in the analysis and performance evaluation of spectrum
sensing in cognitive radio networks. In this context, and based
on a generic mathematical expression for the received SNR
distribution, this work has derived a closed form expression
for the average detection probability under both noise and
signal uncertainties, which has been employed to evaluate and
analyze their impact on the detection performance of spectrum
sensing. The obtained results have shown that the signal
uncertainty phenomenon may result in significant performance

degradations, particularly in the presence of noise uncertainty
even for very small noise power calibration errors. Based on
the proposed model, the design and configuration of spectrum
sensing under both degrading effects has been discussed.

APPENDIX

RELATION BETWEEN SIGNAL UNCERTAINTY AND

PEAK-TO-AVERAGE POWER RATIO

The energy detection performance model developed in this
work quantifies the variability of a primary signal by means of
the signal uncertainty parameter, defined asβ = σ2

γ/γ
2
0 , where

γ0 andσ2
γ represent the average SNR and the SNR variance,

respectively. Determining the value of theβ parameter for a
particular radio technology is not straightforward in general,
which hinders the application of the developed model. Alter-
natively, the variability of a signal can also be characterized
by means of the Peak-to-Average Power Ratio (PAPR), which
is a well-known parameter for many radio technologies. This
appendix derives a closed-form relation between the signal
uncertainty parameterβ and the PAPR in order to facilitate
the practical application of the developed model.

The PAPR,Π, is equivalent to the ratio of the peak SNR,
γmax, to the average SNR,γ0 (i.e.,Π = γmax/γ0). According
to the SNR distribution model of (6),γ is not upper-bounded
(i.e., γmax → ∞). However, a confidence interval can be
defined such that the SNRγ is below a certain maximum
value γmax with a sufficiently representative probabilityǫ
(e.g., ǫ = 0.95 or ǫ = 0.99). According to this criterion, a
representative value forγmax can be obtained by computing:

Prob(γ ≤ γmax) =

∫ γmax

0

fMG
γ (γ)dγ

=
erf
(

γmax−γ0√
2σγ

)
+ erf

(
γ0√
2σγ

)

1 + erf
(

γ0√
2σγ

) = ǫ (20)

and then solving the resulting equation forγmax, which yields:

γmax = γ0 +
√
2σγ erf

−1

(
ǫ− (1− ǫ) erf

(
γ0√
2σγ

))
(21)

Making use of the equalityσ2
γ = βγ2

0 , the relation betweenβ
and the PAPR follows from (21):

Π =
γmax

γ0
= 1 +

√
2β erf−1

(
ǫ− (1− ǫ) erf

(
1√
2β

))

(22)
The result in (22) can be used to numerically determine
characteristic values of the signal uncertainty parameterβ for
various radio technologies based on their typical PAPRs.
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