
Computation Offloading and Resource Allocation in
UAV-Assisted Satellite Network Systems
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Abstract—In order to support the Internet of Things (IoT)
systems, it is necessary to allow IoT user equipment (UE) to
offload its delay-sensitive computational tasks to a server both
UAV-assisted networks and satellite networks have been consid-
ered for computation offloading but mostly studied separately. In
this paper, we investigate computation offloading and resource
allocation in a UAV-assisted satellite network, where an IoT UE
can offload its task to a UAV-carried edge server or a satellite
edge server. To minimise the maximum total service delay of all
IoT UEs, which includes the transmission delay and processing
delay, we propose a Q-learning-based task offloading decision
optimisation algorithm in conjunction with the computation re-
source allocation strategies for the UAV-assisted satellite network.
Simulation results show that our proposed optimisation algorithm
achieves a much lower total service delay of all IoT UEs than
the benchmarks.

Index Terms—Internet of Things, resource allocation, Q-
learning, edge computing, U2X communications, satellite net-
works

I. INTRODUCTION

With the continuous expansion of wireless communications
activity space and the intelligent service requirements, the
new Internet of Things (IoT) network technology assisted by
satellite and 6G wireless communications technologies will
gradually become the main body of future academia and indus-
trial needs [1]. Industry 4.0 is one of the main applications of
IoT that may spawn tremendous and ubiquitous high-data-rate
computational tasks, which will lead to complex interference
management and high-latency task delivery and processing
[2]. Moreover, most industry 4.0 user equipment (UEs) may
repeatedly create requests and delay-sensitive tasks, which
results in a mass of redundant content transmission over the
traditional IoT network [3].

To overcome the aforementioned challenges, mobile edge
computing (MEC) and Low Earth Orbit (LEO) satellite net-
work technologies have appeared as potential supplement
paradigms to the existing cloud computing technology-based
IoT networks in industry and academia [4]. One of the
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advantages of the traditional Cloud-MEC hierarchy is that
a response to tasks from resources close to the end UE is
fast and can satisfy UE low-latency requirements, while still
having access to computing resources at the Cloud servers.
Thus, based on industry 4.0 IoT applications’ characteristics,
like the frequently requested industry functional contents, UEs
are able to send requests to the central controller, and fetch
the requested content from the closest linked MEC server,
rather than from the remote cloud server through backhaul
links [5]. In addition, Artificial intelligence (AI)-empowered
satellite communication technologies allow for the automated
processing and analysis of large amounts of generated raw
data before being transmitted to the ground, to improve the
overall efficiency of the network and reduce data transmission
consumption and additional storage usage [6].

In practical satellite communications scenarios, such as
unmanned aerial vehicle (UAV)-assisted satellite communi-
cation scenarios, how to design an appropriate optimisation
mechanism for the offloading decisions in conjunction with
resource allocation is a challenge [7]. Kim et al. [8] proposed
a satellite edge computing-based offloading strategy for an
IoT sliced network to improve satellite constellation efficiency
in terms of optimising proper satellite altitudes and satellite
offloading rates. Song et al. [9] designed a novel terrestrial-
satellite IoT-based MEC framework and proposed to minimise
the latency and energy consumption among all IoT mobile
devices by jointly optimising the offloading strategy and
resource allocation. In [10], authors proposed a K-means-
based clustering optimisation algorithm to optimise the re-
source allocation for all virtual machines (VMs) under the
transmission and connection delays between the VM and the
satellite in a software-defined networking (SDN) model-based
satellite network. Leyva-Mayorga et al. [11] proposed a global
optimisation algorithm to minimise satellite tasks processing
energy consumption by jointly optimising the image task seg-
ment division and relevant bandwidth resource allocation. All
the above-existing works on satellite-based edge computing
frameworks and optimisation algorithms avoided the vast of
raw data to be transmitted back to ground stations, which is
able to reduce the data transmission and storage costs while
improving the overall satellite network efficiency. However,



they have not sufficiently considered the long distance between
satellites and all mobile devices that may increase the delay
computation offloading.

Taking into account the long distance between satellites
and mobile devices, UAVs could be considered as a flexible
edge server to overcome this restriction. Lu et al. [12] de-
signed a multi-UAV-assisted MEC framework and proposed
a spiral placement algorithm and a reinforcement learning-
based optimisation algorithm to maximise the system utility,
which consists of energy consumption and task processing
delays, in conjunction with optimising all UAVs’ deploy-
ment and offloading decisions. Zhao et al. [13] proposed
a cooperative multi-agent deep reinforcement learning op-
timisation algorithm to minimise the energy and execution
delay consumptions of all UAVs by jointly optimising their
trajectories and offloading decisions in a multi-UAV-assisted
MEC system network. In [14], authors proposed two deep
reinforcement learning-based optimisation algorithms for a
UAV-aided edge computing network to maximise the average
aggregate quality of experience (QoE) among all devices and
optimise the trajectories of all UAVs, respectively. In [15],
authors proposed a deep Q-learning algorithm for optimising
offloading decisions for all users, while optimising the UAV
hotspot selection under task priority considerations in a UAV
mobile edge computing network. We note that, the above
existing works have not sufficiently considered the coverage
capacity and battery limitations of UAV-empowered edge
servers, then some delay-sensitive tasks may not be available
to be processed at the UAV-empowered edge server due to
the limited computation resources capacity and the coverage
capacity.

Inspired by the aforementioned works, we envision a UAV-
assisted satellite edge intelligent computing model to minimise
the maximum service delay consumption among all IoT UEs
via optimising the task offloading decision in conjunction with
optimising computation resources at the UAV and the satellite.
The major contributions of this paper can be summarised as
follows.

• A UAV-assisted satellite two-layer edge intelligent net-
work model is proposed for the sake of minimising the
maximum service delay consumption (i.e., transmission
delay and processing delay) among all IoT UEs, which
is to incorporate LEO and UAV-to-everything (U2X)
communications for edge computing, it is beneficial to
be conveniently and quickly deployed to provide low-
latency and computation-intensive services for IoT UEs.

• A Q-learning-based UAV-assisted satellite network of-
floading decision optimisation (QUSNO) framework is
proposed to optimise the offloading decisions among all
IoT UEs while optimising the computation resources at
the UAV-assisted and satellite edge servers for the edge
computing IoT UEs, respectively.

• Massive simulation results show that the proposed
QUSNO algorithm has superior performance in terms
of service delay consumption reduction in comparison
with the benchmarks (i.e., local-processing, UAV edge-

processing, and satellite edge-processing), which illus-
trates the efficacy of the proposed QUSNO algorithm.

II. SYSTEM MODEL

In this section, we first introduce the UAV-assisted satel-
lite two-layer computation offloading framework. Then, the
communication and computation models will be introduced
respectively. Finally, we introduce the delay consumption
model of each UE.

A. UAV-Assisted Satellite Network System Model

satellite link

U2X link

UAV Edge Server

Satellite Edge Server

Ground  Stat ion

Fig. 1: An edge intelligent two-layer UAV-assisted satellite
network system

As shown in Fig.1, we consider a UAV-assisted satellite
network system consisting of two different layers, which
include the IoT UE layer and the edge server layer. The IoT-
based UE layer includes N UEs, which can be denoted by
N = {1, 2, 3, ..., N}. Different from the existing works [8]–
[15], we consider the edge server layer has a lower edge layer
and an upper edge layer. To reduce the system complexity,
we consider that the lower edge layer is composed of one
edge computing-empowered UAV and the upper edge layer
consists of one LEO satellite with an edge computing server.
For further research according to this architecture, more UAVs
and satellites could be involved. Apart from IoT UEs and
edge servers, we also consider a gateway, which is used to
collect the requests from all IoT UEs and make offloading
decisions. After that, the corresponding resources will be
allocated accordingly. In addition, in our system, we consider
a time slot mechanism, where the index and the length of a
time slot can be denoted as t and ∆t, and the set of time slot
is denoted as T = {1, 2, ..., T}, respectively.

The offloading decision for IoT UE n in the tth time slot is
denoted by xn(t), yn(t) ∈ {0, 1}, where xn(t) = 1 or yn(t) =
1 indicate that the task is processed by IoT UE n itself or an
edge server, respectively; otherwise xn(t) = 0 or yn(t) = 0;
and we have

xn(t) + yn(t) = 1,∀n ∈ N. (1)



If the task of IoT UE n in time slot t is offloaded to an
edge server for processing, which has two options and can be
denoted by en(t) ∈ {0, 1}, where en,u(t) = 1 indicates that
task n is processed by the UAV-assisted edge server; otherwise
en,s(t) = 1 indicates that task n will be processed by the
satellite-based edge server, and we have

yn(t)(en,u(t) + en,s(t)) = 1,∀n ∈ N. (2)

If the task of IoT UE n in time slot t is locally processed,
and the processing delay of local processing can be expressed
as

Tn,l(t) =
Dn(t)Cn(t)

f l
n(t)

, (3)

where Dn(t) (in bits) is the input data size of the nth IoT
UE task for local processing; Cn(t) (in cycles/bit) denotes the
required number of CPU cycles to process one-bit task; f l

n(t)
(in CPU cycles/s) denotes the local processing capability of
IoT UE n to process the task by itself.

B. Edge Processing Model

1) UAV-assisted edge processing: In edge computing mode,
if the task of IoT UE n in time slot t is offloaded to the UAV-
assisted edge server, i.e., en,u(t) = 1, then the input data of
the nth task should be transmitted from the nth IoT UE to
the UAV. Since the UAV flies to IoT UE n, there are Line-of-
Sight (LoS) link and Non-Line-of-Sight (NLoS) link between
the UAV and IoT UE n. The corresponding LoS probability
is given by

PLoS
u,n (t) =

1

1 + aexp(−b(θ − a))
, (4)

where a and b denote positive constants that depend on the
environment and the values are given in [16]; θ denotes
the elevation angle of the UAV and it can be calculated by θ =
arctan(Hpos

u (t)/
√
(xpos

u (t)− xpos
n (t))2 + (yposu (t)− yposn (t))2,

∀n ∈ N , where Hpos
u (t), xpos

u (t), xpos
n (t), yposu (t), yposn (t) are

the location coordinates of the UAV and the nth IoT UE,
respectively.

According to equation (4), the path loss between the UAV
and IoT UE n in time slot t can be expressed in dB as

PLu
n(t) = 20log

(
4πfc
c

dn,u

)
+ PLoS

u,n (t)ηLoS

+(1− PLoS
u,n (t))ηNLoS ,

(5)

where dn,u is the distance between the UAV and IoT UE
n; ηLoS and ηNLoS (in dB) are the losses corresponding to
the LoS link and NLoS link, respectively; fc is the carrier
frequency and c is the speed of light.

The achievable uplink data transmission rate in time slot t
between IoT UE n and the UAV is given by

rn,u(t) = Wnlog2

(
1 +

pn(t)10
(−PLu

n(t)/10)

N0

)
, (6)

where Wn is the channel bandwidth allocated by UAV to the
nth IoT UE; pn(t) denotes the transmission power of IoT UE
n; N0 is the additive white Gaussian noise power.

The transmission delay of the task from IoT UE n to the
UAV in time slot t is given by

Tup
n,u(t) =

Dn(t)

rn,u(t)
. (7)

After all the input data of the task has been fully received
by the UAV, the processing delay for the task of IoT UE n at
the UAV can be expressed by

T off
n,u (t) =

Dn(t)Cn(t)

fe
n,u(t)

, (8)

where fe
n,u(t) (in cycles/s) is the allocated computation re-

sources in time slot t at the UAV to IoT UE n.
Therefore, the total delay consumption of processing task n

at the UAV-assisted edge server is given by

Tn,u(t) = Tup
n,u(t) + T off

n,u (t). (9)

2) Satellite-based edge processing: Similar to the UAV-
assisted edge processing model, if the task of IoT UE n is
offloaded to the satellite-based edge server in time slot t, i.e.,
en,s(t) = 1, then the input data of the nth task should be
transmitted from the nth IoT UE to the satellite. The satellite
channel mainly consists of free-space path loss in time slot t
which can be expressed in dB as [9]

PLs
n(t) = 92.44 + 20log10 (Hs(t)) + 20log10 (fs(t)) , (10)

where Hs(t) (in km) is the height of the satellite edge server,
and fs(t) (in GHz) is the satellite system operating frequency.
The achievable uplink data rate from IoT UE n to the satellite
in time slot t can be presented as

rn,s(t) = Wnlog2

(
1 +

pn(t)gn,s(t)

N0

)
(11)

where Wn is the channel bandwidth allocated by satellite to
the nth IoT UE; gn,s(t) denotes the channel gain between
the satellite and IoT UE n, where the fast fading follows
complex Gaussian distribution CN (0, 1) and the shadowing
model follows log-normal distribution C(0, 8) [9].

The transmission delay of the task from the nth IoT UE to
the satellite in time slot t is given by

Tup
n,s(t) =

Dn(t)

rn,s(t)
. (12)

and the processing delay for the task n at the satellite can be
expressed by

T off
n,s (t) =

Dn(t)Cn(t)

fe
n,s(t)

, (13)

where fe
n,s(t) (in cycles/s) denotes the allocated computation

resources at the satellite to the nth IoT UE.



Therefore, the total delay consumption of processing task n
at the satellite-based edge server is given by

Tn,s(t) = Tup
n,s(t) + T off

n,s (t). (14)

III. PROBLEM FORMULATION AND PROPOSED
ALGORITHM

In this section, we first formulate the minimised total delay
consumption problem, then propose a Q-learning-based UAV-
assisted satellite network offloading decision optimisation
(QUSNO) algorithm to solve the optimisation problem.

A. Problem Formulation

We propose to minimise the maximum total delay consump-
tion among all IoT UEs while optimising the offloading deci-
sions I = {In(t) = (xn(t), yn(t)en,u(t), yn(t)en,s(t)),∀n ∈
N ,∀t ∈ T }, computation resource allocation fe =
{fe

n,u(t), f
e
n,s(t),∀t ∈ T } at edge servers. Then, the joint

optimisation problem can be formulated as follows

P : min
I,fe

max
n∈N

Tn(t) (15)

s.t. xn(t), yn(t), en,u(t), en,s(t),∈ {0, 1}, ∀n ∈ N , (15a)
xn(t) + yn(t)(en,u(t) + en,s(t)) = 1, ∀n ∈ N , (15b)∑
n∈N1

yn(t)en,u(t)f
e
n,u(t) ≤ F e

u , (15c)∑
n∈N1

yn(t)en,s(t)f
e
n,s(t) ≤ F e

s , (15d)

0 ≤ f l
n(t) ≤ fe

n,u(t) ≤ fe
n,s(t), ∀n ∈ N , (15e)

pn(t) ≤ pmax, ∀n ∈ N (15f)
Tn(t) ≤ τn(t), ∀n ∈ N (15g)

where Tn(t) = xn(t)Tn,l(t) + yn(t)(en,u(t)Tn,u(t) +
en,s(t)Tn,s(t)) (∀n ∈ N ); N1 is the set of edge-processing
IoT UEs; F e

u , F
e
s denote the maximum computation capability

in the UAV-assisted edge server and the satellite edge server,
respectively; (15a) indicates the offloading decision binary
indicator for each IoT UE; (15b) denotes that each IoT UE
task is processed either locally by the IoT UE itself or by an
edge server; (15c) and (15d) denote that the total computation
resources allocated at the UAV-assisted edge server or the
satellite edge server must not surpass its maximum computa-
tion capability; (15e) denotes that for each IoT UE, the amount
of computation resource available at the satellite edge server is
the largest, followed by that at the UAV-assisted edge server,
while that available for local processing is the smallest but
should be non-negative; (15f) indicates the constraint on the
transmit power of each IoT UE; and (15g) indicates that each
task processing delay consumption should be kept below the
maximum tolerable delay threshold.

B. Q-Learning-Based UAV-Assisted Satellite Network Offload-
ing Decision Optimisation Algorithm

To solve the formulated optimisation problem (15), which
can be modelled as a Markov decision process (MDP) model
[4], and the MDP model is a tuple ⟨S,A,P,R⟩ and the details
of each component are introduced as follows.

• State Space S: the state space set can be defined as S =
{st, t ∈ T }, where st is the state containing five parts in
each time slot and it can be expressed as

st ≜ {D(t),C(t), τ(t), r(t),Fe(t)}, (16)

where D(t) = [D1(t), ..., Dn(t)(t)] and C(t) =
[C1(t), ..., Cn(t)(t)] are denoted in time slot t the IoT
UE input data size and the required total CPU cycles,
respectively; τ(t) = [τ1(t), ..., τN (t)] is the delay con-
sumption constraints for each IoT UE task in time slot t;
r(t) = {[r1,u(t), ..., rN,u(t)], ..., [r1,s(t), ..., rN,s(t)]} is
the set of the achievable uplink transmission rate in the
tth time slot between each IoT UE and an edge server;
and Fe(t) = [Fu(t), Fs(t)] denotes that the available
computation capacity at a remote edge server.

• Action Space A: similar to the state space, the ac-
tion space set can be defined as A = {at, t ∈ T },
which contains two main parts: offloading decisions (i.e.,
x(t),y(t), eu(t), es(t)) and computation resource alloca-
tion (i.e., feu(t), f

e
s (t)). Therefore, in time slot t, the action

at ∈ A is given by

at ≜ {x(t),y(t), eu(t), es(t), feu(t), fes (t)}, (17)

where x(t) = [x1(t), ..., xN (t)] indicates that IoT UE
n processes the task by itself; y(t) = [y1(t), ..., yN (t)]
indicates that IoT UE n processes the task by a remote
edge server; eu(t) = [e1,u(t), ..., eN,u(t)] indicates that
IoT UE n processes the task at the UAV-assisted edge
server; es(t) = [e1,s(t), ..., eN,s(t)] indicates that IoT UE
n task is processed at the satellite edge server; feu(t) =
[fe

1,u(t), ..., f
e
N,u(t)] and fes (t) = [fe

1,s(t), ..., f
e
N,s(t)]

denote the allocated computation resources in time slot t
at the UAV-assisted or satellite edge server, respectively.

• State-Transition Probability P: the state-transition prob-
ability policy is a mapping operator from state space to
action space (i.e., π(at|st) : S → A).

• Reward State-Value Function R: in this paper the reward
state-value function can be defined as the total amount of
reward that an agent in the training network is expected
to receive in the long term starting from state s0, which
according to equation (15) can be expressed as

R = maxE

[
T−1∑
t=0

αtR′(st, at)

]
, (18)

where α ∈ [0, 1] is the discount factor; and R′(st, at) is
the immediate reward function in each time slot, which
is given by



R′(st, at) = −E [Tn(t)]

= −E[xn(t)Tn,l(t) + yn(t)(en,u(t)Tn,u(t)

+ en,s(t)Tn,s(t))]. (19)

To solve (19), we propose an actor-critic framework-based
optimisation algorithm, which is called the QUSNO algo-
rithm, which is summarised in Algorithm 1. Firstly, the deep
neural network environment information and state space are
initialised and formulated by the agent accordingly. Then
the actor deep neural network selects an action at based
on the current state st, the policy π(st|θπ) (which denotes
that the neutral network explored offloading decisions and
computation resource allocation schemes, and θπ is the actor-
network parameter), and adds Ornstein-Uhlenbeck noise Ω,
i.e., at = π(st|θπ) + Ω. To update the actor neutral network
parameter θπ , we adopt the stochastic gradient descent method
as

∇θπJ ≈ E
[
∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|s=st

]
,

(20)
where θQ is the critic network parameter, and Q(s, a|θQ) is
the action-value function, which can be obtained based on
Bellman Optimality Equation as

Q(s, a|θQ) = E [R′(st, at) + γQ(st+1, π(st+1)|θQ)] , (21)

where the critic network parameter θQ can be updated by
minimising the loss function, which is expressed as

L = E [yt −Q(st, at|θQ)]2 , (22)

where yt = R′(st, at) + γQ′(st+1, π
′(st+1|θ′π)|θ′Q). Lastly,

the parameters θπ and θQ of target networks can be updated
in each iteration as

θ′π = ωθπ + (1− ω)θπ, (23)

θ′Q = ωθQ + (1− ω)θQ, (24)

where ω ∈ [0, 1] is the update coefficient.

IV. SIMULATION RESULTS

In this section, the simulation results with an edge intelligent
two-layer UAV-assisted satellite network system as shown in
Fig.1 is provided and analysed. The scenario considered is
that a satellite edge server offers edge computing service in a
1000m× 1000m area, and a UAV-assisted edge server offers
edge computing service in a 200m × 200m area within the
satellite edge server coverage [9]. The loss of the LoS link is
ηLoS = 1dB and the loss of the NLoS link is ηNLoS = 20dB
[16]. We assume that each IoT UE only generates one task
in each time slot to be processed, which cannot be divided
into multiple sub-tasks. Unless specified otherwise, the values
for all parameters used in the simulation work are listed in
TABLE I [6], [9], [17].

Algorithm 1 Q-Learning-Based UAV-Assisted Satellite Net-
work Offloading Decision Optimisation (QUSNO) Algorithm

1: Initialise actor-critic network parameters θπ , θQ, learning
rate, reward discount factor, system model parameters (i.e.,
number of episodes, number of time steps, etc.).

2: Initialise θ′Q, π(st|θπ), Q(st, at|θQ), π′(st|θ′π), and
Q′(st, at|θQ)′ according to θπ , θQ.

3: for each episode do
4: Initialise the state s0.
5: for each time slot t do
6: Select action at according to at = π(st|θπ) + Ω.
7: Calculate the immediate reward value according to

(19) and update state st+1.
8: Randomly sample mini-batch of transition tuples

(st, at, R
′
t, st+1), and replace the oldest ones.

9: Update Q value according to yt = R′(st, at) +
γQ′(st+1, π

′(st+1|θ′π)|θ′Q).
10: Minimise the loss function (22), and update the critic

network parameter θQ.
11: Update the actor network parameter θπ according to

(20).
12: Update the target networks’ parameters θ′π and θ′Q

according to (23) and (24), respectively.
13: end for
14: end for
15: return I∗, fe∗.

TABLE I: Simulation Parameters [6], [9], [17]

Parameters Value
Number of IoT UEs, N 5
Number of UAV-assisted edge servers 1
Number of satellite edge servers 1
The height of the UAV-assisted edge server, Hu 100 m
The height of the satellite edge server, Hs 100 km
The satellite system operating frequency, fs 2 GHz
Transmit bandwidth, W 10 MHz
Transmit power of IoT UE n, pn 200 mW
The AWGN power density at the MEC edge node,
N0

-174 dBm/Hz

Data size of a task of IoT-based UE n, Dn(t) [300, 500] kbits
Computation capability of IoT UE n, f l

n 0.5 G cycles/s
UAV-assisted edge server computation capability, F e

u 1 G cycles/s
Satellite edge server computation capability, F e

s 5 G cycles/s

Fig. 2 illustrates the total service delay consumption among
all IoT UE devices versus the number of episodes with
different discount factors in Algorithm 1. We can see that
Algorithm 1 converges after the 330 and 272 episodes for
the given discount factors {0.7, 0.8}, respectively. Moreover,
it indicates that a larger discount factor results in better
performance. When the discount factor is set to a value close
to 1, it indicates that future reward values have a greater impact
on cumulative reward relative to the current immediate reward
value.

Fig. 3 shows the total service delay consumption versus
the number of IoT UEs, where ‘QUSNO’ is our proposed
Algorithm 1, ‘Local-Processing’, ‘UAV Edge-Processing’ and
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Fig. 3: Total service delay consumption versus the number of
IoT UEs.

‘Satellite Edge-Processing’ are the cases where all tasks will
be processed locally, by the UAV-assisted edge server, or by
the satellite edge server, respectively. The total service delay
consumption increases with the number of IoT UEs among
all the considered scenarios, we can see that the QUSNO
algorithm illustrates the best for any given number of IoT
UEs based on the offloading optimisation in conjunction with
the optimised computation resource allocation schemes at
the UAV-assisted edge server and the satellite edge server
accordingly. When the IoT UE number is larger than 3,
satellite edge-processing leads to the highest total service delay
due to the transmission delays caused by the long distance
between the satellite and IoT UEs. However, When the IoT UE
number is larger than 6, UAV-assisted edge-processing leads to
the highest total service delay consumption due to processing
delays caused by many tasks sharing the limited computation
capacity of the UAV-assisted edge server.

V. CONCLUSION

In this paper, we have proposed a Q-learning-based UAV-
assisted satellite network offloading decision optimisation al-
gorithm in conjunction with computation resource allocation
optimisation to minimise the total service delay consumption
of all IoT UEs in a UAV-assisted satellite network system,
where each IoT UE may process its task locally or offload
it to a remote edge computing server. The simulation results
demonstrate that the proposed algorithm achieves a much
lower total service delay consumption than local-processing,
UAV Edge-processing, and satellite Edge-processing.
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