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Abstract—High-resolution millimetre-wave (mmWave) radar 
sensors have become increasingly popular in consumer markets. 
This study addresses the challenge of tracking multiple active 
speakers in indoor environments using high-resolution radar and 
microphone array. Through our experiments, we have observed 
that the Sequential Monte Carlo Probability Hypothesis Density 
(SMC-PHD) filter, when given point cloud data from a high-
resolution radar as input, can provide promising tracking 
performance. In this work, we add another modality, i.e., audio, to 
the radar SMC-PHD filtering framework for the active speaker 
tracking task. Specifically, we use the audio Direction of Arrival 
(DoA) to guide the particle birth and relocation process in the 
SMC-PHD filtering framework. Furthermore, we propose a 
likelihood function that jointly considers the spatial and angular 
estimation from radar and audio. Experimental results on the 
RAV4D dataset demonstrate that our audio-radar SMC-PHD 
filtering approach produces reliable trajectories, especially in the 
challenging cases such as varying numbers of speakers. 
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I. INTRODUCTION 
Multiple speaker tracking is widely used in applications such as 
video conferencing and human-computer interfaces. By 
accurately tracking the speaker's location, we can implement 
advanced audio enhancement techniques like beamforming and 
source separation, significantly improving the overall audio 
quality. While audio-visual tracking is effective in many 
scenarios, it has inherent limitations, including the absence of 
reliable distance information, privacy concerns, and reduced 
functionality in challenging lighting conditions.  In response to 
these challenges, our work focuses on the development of an 
indoor multiple speaker tracking system that leverages 
millimeter-wave radar and a microphone array. Millimeter-
wave radars have gained widespread use [1] as perception 
sensors due to their mature manufacturing, compact size, and 
affordability. The growing demands for advanced autonomous 
driving systems has led to a reduction in the cost of high-
resolution radar sensors, making them practical for use in the 
consumer market, particularly for people monitoring and 
tracking applications.  Our proposed system is specifically 
designed for deployment in meeting scenarios that exhibit low 
illumination and require stringent privacy protection measures. 

Radar detections often suffer from low signal-to-noise ratios 
(SNR) and lack of semantics, leading to missed detections and 

false alarms in cluttered scenarios. To model these unreliable 
detections, Bayesian tracking frameworks with random finite 
sets (RFS) [2] are employed. In this framework, detections are 
represented as a random finite set described by a multiple object 
probability density function (pdf). The multi-object pdf is a 
non-negative function defined over the set cardinality and the 
spatial positions of these detections. Consequently, it captures 
both the distribution of the set cardinality, which represents the 
number of detections, and the distribution of the individual 
detection given the cardinality. To alleviate the computational 
burden associated with integrating over sets in the Chapman-
Kolmogorov equation, the first-order approximation of the 
multi-object pdf, known as the Probability Hypothesis Density 
(PHD) [2], is utilized. The practical implementation of the PHD 
filter includes methods like the GM-PHD filter [3], which 
models density functions as Gaussian distributions, and the 
SMC-PHD filter [5], which employs particles to represent the 
distributions. To address the challenge of unstable cardinality 
estimation, the CPHD filter [4] has been proposed, which 
propagates the cardinality distribution in addition to the PHD. 
Recent advancements have been made in trajectory 
PHD/CPHD filtering [5], where sets of trajectories are modeled 
using a Poisson multi-trajectory density. 

Audio signal is used for audio-visual tracking of speakers. Kılıc 
et al. [6] propose an audio-visual tracking framework which use 
the DoA of the audio sources to guide the particle propagation 
in the prediction step and to weight the particle in the 
measurement step of the particle filter. In their following 
work[7], they propose an SMC-PHD filtering for audio-visual 
tracking, where the DoA is used to propagate the born particles 
and re-allocate the surviving and spawned particles. Our 
proposed fusion framework of radar and audio is mainly 
inspired by this work. 

In our study, we introduce an innovative audio-radar tracking 
framework that leverages DoA information estimated from a 
microphone array to enhance radar SMC-PHD filtering. Both 
radar and audio data suffer from low spatial resolution and low 
SNR in complex indoor environment. Our experimental results 
demonstrate the effectiveness of our proposed method, 
particularly in achieving smoother trajectories when tracking 
multiple people in complex indoor environments. Moreover, 
the proposed framework can reliably estimate both the number 
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of speakers and their positions, even in the presence of frequent 
occlusions. 

The remainder of this work is organized as follows: Section II 
provides a comprehensive introduction to our proposed 
framework for audio-radar SMC-PHD filtering. Section III is 
dedicated to a thorough analysis of the experimental results 
obtained from the dataset. Finally, Section IV summarises the 
main findings and discusses directions for future research. 

II. AUDIO-RADAR SMC-PHD FILTERING 
In this section, we propose an audio radar SMC-PHD filtering 
framework for multi-speaker tracking. We define the state of 
particle as 𝑥𝑥𝑘𝑘

𝑗𝑗 , a four-dimensional vector of position and 
velocity in XY plane. The subscript 𝑘𝑘  indicates the frame 
number, and the superscript 𝑗𝑗 indicates the particle index. The 
particles can be categorized into three sets: the survival object 
set 𝑆𝑆𝑘𝑘, the spawn object set 𝐵𝐵𝑘𝑘, and the born object set 𝛤𝛤𝑘𝑘. The 
born particles are mainly used to detect the new speaker who 
entering the field of view or reappear from occlusion.  At each 
update step, a proportion of 𝜆𝜆𝑆𝑆 particles from the total particles 
are duplicated as spawn particles, while a proportion of  𝑝𝑝𝑆𝑆 
particles from the last frame are randomly selected as surviving 
particles. The surviving particles are then propagated using the 
linear motion model. The measurements denoted by 𝑧𝑧𝑘𝑘𝑖𝑖  consists 
of two parts, one is for the 2D location measured by radar 
denoted as 𝑝𝑝, and the other is for the angles 𝜃𝜃 measured by 
radar and microphone array respectively.  

As shown in Fig 2.1, the particle propagation process consists 
of three steps: particle birth, particle relocation and particle 
resampling.  

The particle birth process is an optional process only when new 
speakers are detected entering the Field of View (FoV) or 
reappearing after occlusion. The audio DoA can provide prior 
knowledge about the number of speakers. Therefore, we can 
infer the appearance of new speakers if the number of current 
DoA lines is greater than the estimated number of speakers in 
the last frame. The number of new speakers, denoted as 𝜆𝜆𝑘𝑘, is 
determined by the difference between them. When new 
speakers are detected, we need to uniformly sample some born 
particles around the DoA line, as shown in Fig 2.1 (a). 
Assuming that we generate 𝜌𝜌 particles for each new detection, 
the initial weights for these particles are given by  

 𝜔𝜔𝑘𝑘|𝑘𝑘−1 =
1

 𝜌𝜌𝜆𝜆𝑘𝑘
 (2-1) 

In the particle relocation process, we can adjust the particle 
positions towards the corresponding DoA lines to improve 
particle efficiency. For each particle, we calculate the 
perpendicular distance to each DoA line. Ideally, particles 
should be assigned to the nearest DoA line. However, the 
number of DoA lines may not match the number of speakers, 
especially in the case of missed detections or false alarms. To 
address this, we define a distance threshold to prevent incorrect 

assignment of particles to DoA lines. If the nearest distance 𝑑𝑑𝑘𝑘
𝑗𝑗  

falls within the threshold, the particle will be relocated to 
approach the nearest DoA line as 

 𝑥𝑥𝑘𝑘
𝑗𝑗 = 𝑥𝑥𝑘𝑘

𝑗𝑗 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑘𝑘
𝑗𝑗𝜉𝜉𝑘𝑘 (2-2) 

where 𝜉𝜉𝑘𝑘 represents the vector of the audio DoA, and 𝑘𝑘𝑑𝑑 is a 
scaling factor. Fig. 1 (b) illustrates the process of particle 
relocation. The red and blue crosses represent the original 
particles and the relocated particles, respectively. It is clear that 
all the particles move towards the DoA line after relocation. 

 

(a)                            (b)                           (c) 

Fig. 1.  Particle propagation process: (a) particle birth (b) 
particle relocation (c) particle resampling 

After updating the locations of the particles, we need to 
determine their weights in the Bayesian recursion framework. 
In the PHD filtering, the survival set, and the spawn set are 
modelled as multi-Bernoulli RFS, and the born set is modelled 
as a Poisson RFS. The motion model can be modelled as a 
multi-Bernoulli process. Therefore, we can derive the 
corresponding PHD of the multi-object posterior and propagate 
the density instead of the full RFS posterior to avoid numerical 
intractability in the set integral. Accordingly, the prediction 
weight for a particle is calculated as 

 𝜔𝜔𝑘𝑘|𝑘𝑘−1
𝑗𝑗 = (𝑝𝑝𝑆𝑆 + 𝜆𝜆𝑆𝑆)𝜔𝜔𝑘𝑘−1|𝑘𝑘−1

𝑗𝑗  (2-3) 

In the update step, suppose there are  𝐿𝐿𝑘𝑘  particles and 𝐿𝐿𝑧𝑧 
measurements denoted by 𝑧𝑧𝑘𝑘𝑖𝑖  at time step 𝑘𝑘 .The weight is 
updated according to 

𝑤𝑤𝑘𝑘∣𝑘𝑘
𝑗𝑗 = �1 − 𝑝𝑝𝐷𝐷 + ∑  𝐿𝐿𝑧𝑧

𝑖𝑖=1
𝑝𝑝𝐷𝐷ℎ𝑘𝑘�𝑧𝑧𝑘𝑘

𝑖𝑖 ∣𝑥𝑥𝑘𝑘
𝑗𝑗�

𝜅𝜅+∑  𝐿𝐿𝑘𝑘−1+𝐽𝐽𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝐷𝐷ℎ𝑘𝑘�𝑧𝑧𝑘𝑘

𝑖𝑖 ∣𝑥𝑥𝑘𝑘
𝑗𝑗�𝑤𝑤𝑘𝑘∣𝑘𝑘−1

𝑗𝑗 �𝑤𝑤𝑘𝑘∣𝑘𝑘−1
𝑗𝑗   (2-4) 

where 𝑝𝑝𝐷𝐷, ℎ𝑘𝑘 and 𝜅𝜅 are the detection probability, the likelihood, 
and the density of clutter.  

For the likelihood  ℎ𝑘𝑘, as shown in Fig 2.2 (a), we consider 
jointly the spatial localization error estimated by the radar and 
the fused angular error estimated by both the radar and the 
microphone array. The equation is given by 

 ℎ𝑘𝑘 = 𝐿𝐿𝑝𝑝 ∙ 𝐴𝐴𝜃𝜃 (2-5) 

where 𝐿𝐿𝑝𝑝 represents the spatial likelihood function calculated 
based on the fitted two-dimensional Gaussian distributions that 
are fitted from the radar point detections.  
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The term 𝐴𝐴𝜃𝜃, which serves as an angular penalty factor [8], is 
defined as: 

 𝐴𝐴𝜃𝜃 = �𝜕𝜕𝜃𝜃1𝜕𝜕𝑝𝑝1
 
𝜕𝜕𝜃𝜃2
𝜕𝜕𝑝𝑝2

 − 
𝜕𝜕𝜃𝜃2
𝜕𝜕𝑝𝑝1

 
𝜕𝜕𝜃𝜃1
𝜕𝜕𝑝𝑝2

 � (2-6) 

As shown in Fig. 2 (b), this term corresponds to the area of the 
parallelogram spanned by two angle derivative vectors from 
radar detections and the microphone array. 

 

      (a)                                              (b) 

Fig. 2. Angular penalized likelihood: (a) spatial likelihood (b)  
angular penalty factor 

After the update step, the cardinality, which represents the 
number of speakers, is estimated by 

 𝑁𝑁𝑘𝑘 = � 𝑤𝑤𝑘𝑘∣𝑘𝑘
𝑗𝑗

𝐿𝐿𝑧𝑧

j=1
 (2-7) 

Because the PHD filter tracks the distribution of multiple 
objects rather than individual objects themselves, we need to 
apply a k-means clustering to the particle sets and use the 
centers as the predicted state of the tracked speakers. 

One of the key challenges in SMC methods is sample 
impoverishment [9]. As the number of iterations increases, the 
variance of the particles grows, and only a small subset of the 
total particles effectively represent the distribution while the 
others are distributed in low density areas. To alleviate this 
problem, a resampling step is essential after each iteration. 
Assuming that there are 𝑁𝑁𝑘𝑘 estimated speakers, then we sample 
and select 𝐿𝐿𝑘𝑘  =  𝜌𝜌𝑁𝑁𝑘𝑘  particles from the original particle set. 
We adopt the multinomial resampling strategy [9], where the 
particles are selected according to the multinomial distribution 
as 

𝑥𝑥𝑘𝑘∗ = 𝑥𝑥�𝐹𝐹−1(𝑢𝑢𝑘𝑘)� with 𝑖𝑖 s.t. 𝑢𝑢𝑘𝑘 ∈ �∑  𝑖𝑖−1
𝑠𝑠=1 𝑤𝑤𝑠𝑠,∑  𝑖𝑖

𝑠𝑠=1 𝑤𝑤𝑠𝑠�    (2-8) 

where 𝑢𝑢k  is one of 𝐿𝐿𝑘𝑘 the pre-generated uniform random 
numbers and F−1 is the inverse of the cumulative distribution 
function associated with the normalized weights 𝑤𝑤𝑠𝑠  of the 
particle. 

Fig 2.1 (c) illustrates the particle resampling process. The blue 
crosses represent the original particles, while the red circles 
represent the resampled particles. During this process, particles 
with low weights are discarded, and those with higher weights 
are chosen. This helps to improve the efficiency of the particles. 

The entire audio-radar SMC-PHD filtering framework is 
summarized in the following pseudo-code. 

ALGORITHM 1: AUDIO-RADAR SMC-PHD FILTERING 
1 for frame k = 1, 2, … do 
2  Select 𝐿𝐿𝑘𝑘−1 particles as survival and spawn particles 
3  Propagate the survival particles using the motion 

model 
4  if DoA exists then 
5   for Each survival particle do 
6    Calculate the distance to each DoA line 
7    Relocate particles towards the nearest DoA 

line 
8   end for 
9  end if 
10  Estimate the number of speakers 𝑁𝑁𝑠𝑠 
11  if  𝑁𝑁𝑠𝑠 > 𝑁𝑁𝑘𝑘−1then   # New speaker is detected 
12   Generate  𝜌𝜌𝜆𝜆k new-born particles around the 

DoA lines 
13   Update weights 𝜔𝜔𝑘𝑘

𝑖𝑖  for born particles 
14  end if 
15  Update weights 𝜔𝜔𝑘𝑘

𝑖𝑖  for survived and spawn particles   
16  for Each particle do 
17   Calculate the distance to each detection 
18   Select the nearest distance 
19   Estimate the likelihood  
20  end for 
21  Update all particle weights 𝜔𝜔𝑘𝑘

𝑖𝑖   
22  Estimate the cardinality of the set 
23  K-means clustering to estimate the speaker position 
24  Resample 𝐿𝐿𝑘𝑘 = 𝜌𝜌𝑁𝑁𝑘𝑘 particles 
25 end for 
  

III. EXPERIMENTAL RESULTS 

A. Datasets and Performance Metrics 
The RAV4D dataset [10] is a recently proposed multimodal 
dataset for indoor multi-person tracking that provides data from 
radar, microphone arrays and stereo cameras. It aims to 
improve tracking performance by exploiting the synergistic and 
complementary capabilities of these different sensing 
modalities. As shown in Fig. 3, we used the processed 2D radar 
point cloud and audio DoA as input to our tracking algorithm. 
The dataset provides different sequences with varying numbers 
of people and moving trajectories. Specifically, we select the 
one containing three people with frequent trajectory crossing as 
a visual example to test our tracking framework. 

 
Fig.3. The RAV4D dataset 

The RAV4D dataset is originally collected for the evaluation of 
people tracking, so the trajectory annotation is only done for the 
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segments where all people speak aloud. Therefore, the number 
of audio sources is mostly constant, and the audio modality 
mainly acts as a complementary sensor to improve the tracking 
accuracy. To specifically test the speaker tracking performance, 
we further define a narrowed FoV as the upper half of the room 
where 𝑦𝑦 ∈ [385,650], so that the number of speakers can vary. 

For the evaluation of tracking performance, we consider both 
multiple object tracking accuracy (MOTA) and multiple object 
tracking precision (MOTP) [11], as well as the generalized 
optimal sub-pattern assignment metric (GOSPA) [12], which 
specifically considers the cardinality error and can better 
evaluate the speaker tracking problem.  

B. Results and Discussions 

First, we evaluate the tracking performance using the RAV4D 
dataset. We compare the radar EKF, the radar SMC-PHD 
filtering and the audio radar SMC-PHD filtering. From Table I, 
we can find that the SMC-PHD filtering framework achieves an 
improvement in MOTA and a marginal performance gain with 
respect to MOTP than the EKF framework. The increase in 
MOTA indicates smaller tracking errors in terms of false 
positives, missed targets or identity switches. The small 
difference in MOTP suggests that while tracking accuracy has 
improved, localization accuracy has not changed significantly 
for the single sensor case. 

By incorporating the audio source into the tracking framework, 
we can see that the audio radar SMC-PHD filtering provides the 
significant improvement in both MOTA and MOTP metrics. 
This indicates that the fusion of audio and radar data in the 
SMC-PHD filtering framework improves both the accuracy and 
precision of multi-object tracking. 

TABLE I PERFORMANCE COMPARISION 

Methods MOTA (%) MOTP (%) 
Radar EKF 77.3 82.6 

Radar SMC-PHD 79.5 82.7 
Audio-Radar SMC-PHD 87.3 86.5 

As the evaluation metrics take into account many aspects of 
tracking, the performance increase cannot be understood 
directly. Therefore, we visually assess the smoothness of the 
predicted trajectory, as shown in Figure 4. We can see that by 
incorporating the angle estimation, the trajectory tends to be 
smoother, thus reducing the localization error. 

 

Fig. 4. Trajectory comparison 

In the next test, we examine the tracking performance with a 
narrowed FoV. By defining a narrow FoV, the speakers may 
frequently enter or leave the FoV, causing the trajectory to be 
fragmented and the number of speakers to vary over time. 
Therefore, tracking could be difficult in this case. In Fig. 5, we 
show the frame-by-frame GOSPA error by radar SMC-PHD 
filtering and our proposed audio-radar SMC-PHD filtering. 
From the figure, we can see that incorporating the audio 
modality into the tracking framework significantly improves 
the tracking performance by enabling a lower cardinality 
estimation error and the smaller localization error. From the 
lower valley of the error curve, we can see that the localization 
error is smaller due to the high resolution of the radar sensor 
and the cardinality error is the largest contributor to the GOSPA 
error.  

 

Fig. 5. Performance comparison with respect to GOSPA  

We then specifically show the cardinality error of the two 
methods in Fig. 6. We can see that the audio radar method can 
give a more consistent estimate of cardinality. When using 
radar alone, it is possible to lose some pedestrians due to weak 
reflections from the human body, especially when the speaker 
is far away. In some extreme cases, such as perpendicular 
motion, the radar sensor may only return a few points due to 
possible occlusion and limited ability to detect low angular 
velocity motion. Therefore, relying on tracking alone cannot 
fully solve the detection failure problem. In contrast, by 
introducing the audio DoA into the tracking framework, the 
cardinality estimation can be significantly improved. In 
addition, we observe some delay when people enter or leave the 
FoV, which may be caused by the inaccurate angular estimation. 

 

 

Fig. 6. Number of speakers estimation 
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IV. CONCLUSION 
In this paper, we propose a novel audio radar tracking 
framework. The framework is based on SMC-PHD filtering and 
uses audio DoA to guide the particle birth location and 
relocation. Furthermore, we propose a likelihood that jointly 
considers the spatial distribution of the radar point cloud and 
the DoA estimated by the radar and microphone array. We test 
our audio-radar tracking algorithm on the RAV4D dataset and 
achieve better performance than radar-only tracking in terms of 
MOTA, MOTP and GOSPA metrics. Compared to the Radar-
SMC-PHD filtering, the proposed Audio-Radar-SMC-PHD 
filtering can reliably estimate both the number of speakers and 
positions, especially in challenging scenarios such as the case 
of multiple persons and frequent occlusions. In future work, we 
aim to further address potential modality absences and develop 
a robust tracking framework. 
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