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Abstract—In this work, we enhance cooperative sensing capa-
bilities in multi Unmanned Aerial Vehicles (UAVs) systems, with
each UAV mounted with a directional antenna to detect multiple
targets cooperatively. To improve detection accuracy in dynamic
environments with noise fluctuations, we adopt an eigenvalue-
based detection technique. We maximize total detection prob-
ability by simultaneously optimizing the spatial deployment of
UAVs and their antenna orientations. To address the inherent non-
convexity of this problem, we propose an iterative Particle Swarm
Optimization (PSO)-based approach with a penalty method for
its fitness function. The proposed approach effectively navigates
complex search spaces, managing spatial and antenna constraints
to guide solutions toward global optima. Monte Carlo simulations
demonstrate that our PSO-based algorithm outperforms current
techniques, achieving superior detection performance and robust
sensing capabilities. Notably, the proposed scheme achieves a
7.94% improvement with 2 UAVs and a 7.21% improvement with
3 UAVs over the alternating direction penalty method (ADPM)-
based scheme, highlighting its effectiveness even with fewer UAVs
deployed for cooperative sensing.

Index Terms—Unmanned Aerial Vehicles, Eigenvalue-Based
Detection, Particle Swarm Optimization, Cooperative Sensing.

I. INTRODUCTION

The usage of multi-UAVs-based systems has integrated into
various fields, ranging from civilian to commercial applications,
with significant use in the military [1], [2]. Among these, the
use of multi-UAVs for spectrum sensing is gaining popularity
for its maneuverability, flexible deployment, and ability to
maintain Line-of-Sight (LoS) communication. As a result,
cooperative sensing with multi-UAV systems has emerged as
a powerful approach to enhance detection capabilities across
large areas, especially where traditional sensing schemes face
limitations [3], [4].

In recent years, many studies have sought to improve energy
detection for sensing systems due to its simplicity and low
computational cost [5]–[7]. In [8], authors proposed crowd-
sourced sensing using distributed sensors, while in [9], 3D
RF sensor networks are examined for spectrum monitoring. In
[10] authors analyzed spectrum characteristics at large spatio-
temporal scales, emphasizing the need for adaptive monitoring.

In [11], authors introduced resource coordination strategies for
reliable detection in multi-UAV networks.

However, energy detection depends on accurate knowledge
of noise power. Inaccurate estimation of noise power can result
in a high probability of false alarms and a signal-to-noise
ratio (SNR) wall, making this method highly sensitive to noise
fluctuations [12], [13]. This sensitivity leads to performance
degradation in UAV-based applications, where dynamic and
unpredictable conditions lead to frequent noise variations, es-
pecially in low SNR environments.

To overcome the limitations of energy detection identified
in prior work [11], we adopt an eigenvalue-based detection
(EBD) technique to enhance sensing performance and remains
robust under varying noise conditions. Unlike energy detection,
EBD does not rely on prior knowledge of noise variance,
making it particularly effective under noise uncertainty—an
essential advantage for UAV sensing applications [14], [15].
By jointly optimizing UAV deployment and directional antenna
configurations, our method ensures better resource coordination
to achieve maximum detection probability.

We address the challenge of maximizing sum detection
probability through joint optimization of UAV positions and
antenna settings, tackling a non-convex problem with spatial
and orientation constraints. To solve this, we propose an
iterative PSO-based algorithm, that explores complex search
spaces through heuristic exploration and exploitation [16]. Each
UAV’s position and antenna setting represented by particles,
are optimized to enhance detection performance. To ensure
practical deployment, we incorporate a penalty-based approach
within the PSO fitness function to penalize configurations that
violate spatial, distance, or orientation constraints, enabling
efficient UAVs deployment even under strict conditions [17].

The main contributions of this paper are as follows:
• We propose an optimization framework for multi-UAV co-

operative sensing using eigenvalue-based detection, jointly
optimizing UAV deployment and antenna orientation to
maximize sum detection probability.
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Fig. 1. Multi-UAVs sensing network, where M UAVs cooperate to detect K targets using eigenvalue-based detection along with
flowchart of the proposed algorithm.

• We introduce an iterative PSO-based algorithm with a
penalty method that effectively tackles the non-convex
optimization problem by leveraging the ability of PSO to
explore complex search spaces while applying practical
constraints.

• Through Monte Carlo simulations, we demonstrate
that the proposed PSO-based approach, combined with
eigenvalue-based detection, outperforms traditional energy
detection methods, especially in scenarios with low target
transmission power and with fewer UAVs.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a multi-UAV spectrum
sensing network where UAVs equipped with directional anten-
nas perform eigenvalue-based detection under strict constraints.
The setup uses a 3-D Cartesian coordinate system with M
UAVs, represented by m ∈ {1, . . . ,M}, and N targets,
represented by n ∈ {1, . . . , N}. To minimize the energy
requirement, we assume that each UAV ascends to a fixed
height H to avoid obstacles and maintain this height throughout
the deployment. The locations of the M UAVs are represented
by P = [p1, . . . ,pM ]T ∈ RM×3, where pm = [xm, ym, H]T

defines the coordinates of the mth UAV. Similarly, P′ represents
the locations of the N targets, where p′

n = [x′
n, y

′
n, z

′
n]

T

specifies the coordinates of the nth target.
A. Eigenvalue-Based Detection

According to [14], EBD uses the relative distribution of
eigenvalues in the sample covariance matrix at each UAV,
allowing it to detect signals based on statistical variations rather
than absolute noise power. This technique can be formulated
as a binary hypothesis testing problem, where H0 denotes
signal absence, and H1 its presence. The received signal vector
y(k) ∈ CL×1 under these hypotheses is expressed as,{

H0 : y(k) = w(k), k = 0, 1, . . . ,K − 1,

H1 : y(k) = x(k) +w(k), k = 0, 1, . . . ,K − 1,
(1)

where x(k) ∈ CL×1 is the signal component with co-
variance E[x(k)xH(k)] = σ2

sI, and w(k) ∈ CL×1 is zero-
mean Additive White Gaussian Noise (AWGN) with covariance

E[w(k)wH(k)] = σ2
nI. Here, K is the number of samples, L

is the number of sensors on each UAV, and I is the identity
matrix. The sample covariance matrix Ry of the received signal
is computed as:

Ry =
1

K

K−1∑
k=0

y(k)yH(k), (2)

where yH(k) is the Hermitian transpose of y(k). Under H0,
Ry represents only the noise covariance σ2

nI, while under H1,
it represents both the signal and noise covariances, σ2

sI+ σ2
nI.

The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL of Ry define the test
statistic as T = λ1

λL
. And the decision rule for T is given by:

T

{
≥ λEBD, H1 (Signal Present),
< λEBD, H0 (Signal Absent),

(3)

where λEBD is the detection threshold. Under the null
hypothesis H0, λ1 and λL follow the Tracy-Widom distribution,
but for large K ≫ L, T is approximately Gaussian under both
hypotheses, where SNR =

σ2
s

σ2
n

:{
H0 : T ∼ N

(
1, 2

K

)
,

H1 : T ∼ N
(
1 + SNR, 2(1+SNR)2

K

)
,

(4)

The probability of false alarm Pfa (deciding H1 under H0),

Pfa = Q

(
λEBD − 1√

2/K

)
, (5)

where Q(x) = 1√
2π

∫∞
x

e−t2/2dt represents the tail proba-
bility of the standard normal distribution.

The probability of detection Pd (deciding H1 under H1) is:

Pd = Q

λEBD − (1 + SNR)√
2(1+SNR)2

K

 . (6)

The detection threshold λEBD is chosen based on the desired
false alarm probability (Pfa):

λEBD = 1 +

√
2

K
Q−1(Pfa). (7)

By substituting this λEBD back into the equation for Pd, the
probability of detection becomes:



Pd = Q

(
Q−1(Pfa)− SNR ·

√
K/2

(1 + SNR)

)
. (8)

B. Directional Antenna Model

In multi-UAV cooperative sensing, each UAV is equipped
with a directional antenna that enhances signal strength by
focusing energy in a specific direction, thereby minimizing
interference from other directions. This focused beam improves
sensing performance by concentrating transmitted or received
signals along the main lobe where the gain is substantially
higher compared to other directions.

According to [18], for modeling, the antenna’s gain is
assumed to be constant within the main lobe’s angle range,
(−α, α), and negligible outside this range. The directional gain
Gm,n between UAV m and target n can be expressed as

Gm,n =

{
Ψm,n(ηm), if (ηm,n − ηm), ζm,n ∈ (−α, α),

0, otherwise,
(9)

where Ψm,n(ηm) = 10 log10

(
exp

(
− (ηm,n−ηm)2+ζ2

m,n

2α2

))
.

Here, ηm,n = arctan
(

y′
n−ym

x′
n−xm

)
represents the azimuth angle,

and ζm,n = arctan

(
z′
n−H√

(y′
n−ym)2+(x′

n−xm)2

)
represents the el-

evation angle from UAV m to target n. The term ηm represents
the azimuth orientation of the directional antenna.

In air-to-air scenarios, the wireless channels between UAVs
and targets are typically dominated by Line-of-Sight (LoS)
links, especially when UAVs fly at moderate altitudes. As a
result, we model these LoS links using a free-space channel
model. Consequently, the channel power gain from UAV m to
target n is defined as,

gm,n(pm, ηm) =
β0NtGm,n(pm, ηm)

d2m,n(pm)
, (10)

where β0 is the reference channel gain, Nt is the number of
antenna elements, and dm,n(pm) is the distance between UAV
m and target n.

The signal-to-interference-plus-noise ratio (SINR) received
by UAV m from target n with transmit power Pn is given by

γm,n(pm, ηm) =
Pnβ0NtGm,n(pm, ηm)

d2m,n(pm)σ2
n

, (11)

where σ2
n is the power of AWGN at the receiver. And by

substituting SNR with the γm,n in (9),we get the probability
of detection by UAV m for target n expressed as:

Pm,n(pm, ηm) = Q

(
Q−1(Pfa)− γm,n ·

√
K/2

(1 + γm,n)

)
. (12)

C. Cooperative Detection Model

Individual UAVs are limited in their sensing capabilities due
to hardware constraints, restricting them to scanning only a
narrow frequency range, defined as (fmin

m , fmax
m ). If a target

n transmits within this range, it is considered detectable.
The target’s transmission frequency is selected from a set f t

n

comprising multiple discrete channels {F ′
n + j∆fn}, where

F ′
n is the baseline frequency, ∆fn is the channel spacing, and

j ∈ {1, · · · , Fn} indexes the channels, with Fn representing the
total number of available channels. The detection probability
of UAV m for target n at frequency f is given by:

P f
m,n(pm, ηm) =

Q

(
Q−1(Pfa)−γm,n·

√
K/2

(1+γm,n)

)
, f ∈ (fmin

m , fmax
m ),

0, otherwise.
(13)

To enhance detection, multiple UAVs cooperate by sharing
local decisions χm (with χm = 1 for detection and χm = 0 for
no detection) over synchronized communication links. These
decisions are sent to a fusion center, where a logical OR rule
is applied. The cooperative detection probability of M UAVs
for target n at frequency f is given by:

P f
n (p, η) = 1−

M∏
m=1

(
1− P f

m,n(pm, ηm)
)
. (14)

D. Problem Formulation
To assess the overall sensing performance of the multi-UAV

system, we define its sum detection probability as:

Psum(P,η) =
N∑

n=0

Fn∑
f=0

P f
n (P,η). (15)

A higher Psum indicates better perception accuracy for the
network. The objective is to maximize the sum detection
probability by optimizing the UAVs’ positions P and antenna
orientations η, formulated as:

max
P,η

Psum(P,η) (16)

s.t.
pm ∈ D, ∀m, (16a)
∥pm − p′n∥2 ≥ Smin, ∀m,n, (16b)
∥pm − pl∥2 ≥ Rmin, ∀m ̸= l, (16c)
− π ≤ ηm ≤ π, ∀m. (16d)

In this formulation, (16a) specifies the deployable area for
UAV m; (16b) ensures a minimum sensing distance between
UAVs and targets; (16c) enforces a minimum separation be-
tween UAVs to avoid collisions; and (16d) limits the antenna
orientation for each UAV.

III. METHODOLOGY

As per the expression of the formulated problem (16), it
can be seen that the spatial constraints (16b) and (16c) are
non-convex constraints set. Moreover, the objective function
is inherently non-convex concerning interdependent variable
P and η which makes it challenging for global optimization
using the traditional gradient-based method. PSO is chosen
for its ability to efficiently handle non-convex search spaces.
Unlike gradient-based methods that may get trapped in local
minima, PSO uses a swarm of particles that explore the space
based on personal and global best values. This mechanism
balances exploration and exploitation, preventing premature
convergence. To address these complexities, we propose an
iterative PSO-based algorithm that explores multiple solutions
simultaneously, learning from collective experiences to effec-
tively navigate the complex search space [16]. Additionally, a
penalty-based fitness evaluation was adopted, further guiding



particles toward feasible regions and managing non-convex
constraints. By balancing exploration and exploitation, the
algorithm efficiently identifies UAV configurations that maxi-
mize the sum detection probability while satisfying spatial and
angular constraints.

A. PSO Representation and Initialization
In proposed PSO-based algorithm as shown in Fig. 1, each

UAV initialize Np particles in the search space, where each
particle s

(t)
i,m for UAV m in iteration t includes its position and

antenna orientation:
s
(t)
i,m =

[
x
(t)
i,m, y

(t)
i,m, η

(t)
i,m

]
, (17)

with
(
x
(t)
i,m, y

(t)
i,m

)
as UAV m’s coordinates and η

(t)
i,m its

antenna orientation in iteration t. The swarm consists of Np

particles, where i ∈ {1, 2, . . . , Np}. Each particle s
(t)
i,m is

initialized randomly within the deployable area D, with η
(t)
i,m ∈

[−π, π] for the antenna orientation. Initial velocities v
(t)
i,m are

also randomly assigned to introduce variability, enhancing the
search for optimal configurations. We model M UAVs, each
with Np particles, initialized randomly to explore and optimize
detection probability.

B. Fitness Evaluation with Penalty Terms
In our proposed PSO-based algorithm, the fitness of each

particle is evaluated based on the sum detection probability
Psum(P,η), with penalties applied for each constraint viola-
tions. The fitness function for particle i for m UAV in iteration
t is given by:

Fitness(t)i,m = Psum(Pi,ηi)− λpenalty

∑
j

Constraintj , (18)

where λpenalty is a penalty coefficient, and Constraintj repre-
sents the number of times the j-th constraint is violated, as per
constraints (16a) to (16d). Each violation decreases fitness by
λpenalty, prompting the algorithm to increase fitness by reducing
constraint violations. This penalty-based approach effectively
guides the swarm of particles toward feasible solutions, ensur-
ing all constraint are satisfied.

C. PSO-Based Optimization Algorithm
As outlined in Algorithm 1, the algorithm iteratively opti-

mizes the position and orientation of each UAV, treated as an
individual particle, by balancing both personal experience (per-
sonal best) and collective experience (global best). The inertia
weight w is adjusted linearly from wmax to wmin, encouraging
exploration in early stages and promoting convergence as the
iterations reach Tmax. The velocity and position updates are
governed by (19) and (20) as follows:

v
(t+1)
i,m = w ·v(t)

i,m+c1 ·r1 ·(pbest
i,m−s

(t)
i,m)+c2 ·r2 ·(gbest−s

(t)
i,m) (19)

where w represents the inertia weight, c1 and c2 are accel-
eration coefficients, and r1 and r2 are random values from a
uniform distribution U(0, 1). The first term w · v(t)

i,m maintains
the current direction, the second term drives the UAV toward
its personal best, and the third term steers it toward the global
best position of the entire swarm.

Algorithm 1 Iterative PSO-Based Optimization Algorithm for
UAV Deployment
Input: wmax, wmin, c1, c2, Np, Tmax
Particle Initialization:
1: for each UAV m = 1 to M do
2: for each particle i = 1 to Np do
3: Initialize x

(0)
i,m,y

(0)
i,m ∼ U(D)

4: Initialize η
(0)
i,m ∼ U(−π, π)

5: Set state s
(0)
i,m = [x

(0)
i,m,y

(0)
i,m, η

(0)
i,m]

6: Initialize v
(0)
i,m ∼ U(0, 1)

7: Compute Fitness(0)i,m using (18)
8: Set personal best pbest

i,m = s
(0)
i,m

9: end for
10: end for
Optimization Process:
11: for each UAV m = 1 to M do
12: for iteration t = 1 to Tmax do
13: Update inertia weight: w(t) = wmax − (wmax−wmin

Tmax
) · t

14: for each particle i = 1 to Np do
15: Generate random numbers r1, r2 ∼ U(0, 1)

16: Update v
(t+1)
i,m using (19)

17: Update s
(t+1)
i,m using (20)

18: Clip x
(t+1)
i,m , y(t+1)

i,m within D
19: Clip η

(t+1)
i,m within [−π, π]

20: Compute updated Fitness(t+1)
i,m using (18)

21: if Fitness(t+1)
i,m > Fitnessbest

i,m then
22: Update pbest

i,m = s
(t+1)
i,m

23: end if
24: end for
25: Update gbest among all pbest

i,m

26: end for
27: Set final position and orientation of UAV m to gbest

28: end for
Output: Optimal UAV deployment positions and orientations,
achieving the global best fitness from gbest.

The updated position for each UAV m is then computed as,

s
(t+1)
i,m = s

(t)
i,m + v

(t+1)
i,m (20)

where each particle explores new regions by adjusting its
position and orientation, updating pbest

i,m and s
(t)
i,m after each

position update.

D. Parameter Selection and its Impact
The performance of the PSO algorithm depends on its param-

eters: inertia weight w balances exploration and convergence;
cognitive (c1) and social (c2) coefficients regulate individual
and global attraction, respectively. Random factors (r1, r2)
enhance diversity, while particle count (Np) and iterations
(Tmax) affect computational cost and solution quality. Fine-
tuning these parameters and employing penalty-based fitness
evaluation enables the algorithm to effectively solve the non-
convex UAV deployment problem, optimizing detection prob-
ability under practical constraints.



(c)   (b)(a)

TargetUAVDeployable Area Antenna orientation Minimum UAV-Target Distance

Fig. 2. Deployment results in multiple UAVs perceive multiple target scenarios: (a) M = 3, (b) M = 4, (c) M = 5

IV. NUMERICAL RESULTS

In this section, the numerical results of the proposed op-
timization method for a multi-UAV system are presented.
We conducted simulations using Monte Carlo techniques to
account for randomness in target positioning, measuring the
dynamic deployment adaptation of multi-UAVs aimed to max-
imize detection probability in real-world perception scenarios.
The simulation considers a network where multiple UAVs
ascend to an altitude of 500 meters to minimize unneces-
sary energy consumption while cooperatively sensing three
different targets. The coordinates of the targets are assumed
to be p′

1 = (3000, 2500, 500)m, p′
2 = (2200, 3500, 500)m,

p′
3 = (4000, 3800, 500)m, and the corresponding transmis-

sion frequency sets are F1 = {105, 110, . . . , 240, 245}MHz,
F2 = {205, 210, . . . , 340, 345}MHz, and F3 = {305, 310,
. . . , 390, 395}, MHz with each having the transmission power
equal to 20 dBm. The UAVs are positioned in a 2D space
of 1750 × 5000 square meters, while the observable space
is 5000 × 5000 square meters. The parameter for proposed
PSO are set by: Np = 50, wmin = 0.4, wmax = 0.7,
c2 = 1.5, c2 = 2, λpenalty = 106 and Tmax = 200, with
additional simulation parameters detailed in Table I. To evaluate
the proposed optimization approach, we examine two baseline
methods:

• ADPM-Based Scheme [11]: This approach applies an Al-
ternating Direction Penalty Method to optimize UAV posi-
tions and antenna orientations, enhancing convergence and
detection probability in energy detection system model.

• Non-Optimized Scheme: In this scheme, UAVs are initially
deployed randomly, assuming each UAV is assumed to
sense all targets. Antenna orientations are then optimized
using a Block Coordinated Descent algorithm.

Fig. 2 illustrates the optimized UAV deployment strategy
using the proposed PSO-based algorithm across different UAV
counts. For UAVs assigned to single-target sensing, deployment
is optimized at minimal allowable distances from their targets
to enhance SINR and detection probability; for instance, in
Fig. 2a, the UAV with the sensing band [100, 200] MHz is
positioned close to target 1 along the deployable region’s edge.

TABLE I: Simulation Parameters

Parameters Value
Flight altitude H 500 m
Minimum UAV-target distance Smin 500 m
Collision avoidance distance Rmin 200 m
Number of sampling points K 1000
Specified false alarm probability Pfa 0.001
Directional antenna’s beamwidth θ 20°
Number of isotropic antenna elements Nt 7
Channel power gain β0 -20 dB
Power of AWGN σ2

n -80 dBm
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Fig. 3. Comparison of sum detection probabilities with varying
numbers of UAVs across different schemes.

In contrast Fig. 2c, UAVs tasked with multi-target sensing,
such as one operating in the [180, 220] MHz band for targets
1 and 2, are strategically positioned to balance proximity
and orientation. This placement enables effective multi-target
detection by aligning antenna orientations to maintain optimal
detection across multiple targets.

To ensure statistical reliability, each experiment was repeated
over 100 Monte Carlo runs, and 95% confidence intervals were
calculated for all detection probability metrics. As shown in
Figures 2 and 3, the confidence intervals for UAV counts from
2 to 6 are as follows: for 2 UAVs ±0.6820, for 3 UAVs ±0.3591,
for 4 UAVs ±0.3202, for 5 UAVs ±0.2883, and for 6 UAVs
±0.1288. This indicates reduced performance variability and
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Fig. 4. Comparison of sum detection probabilities with varying
target transmission power across different schemes.

improved system reliability as the number of UAVs increases.
However, when the confidence interval stops significantly de-
creasing with an increase in UAV count, it suggests an optimal
number of UAVs, beyond which additional UAVs provide
diminishing returns. To compare the detection performance
of the proposed PSO with ADPM [11] and Non-Optimized
schemes, we randomly positioned the targets and used each
algorithm to optimize UAV deployment and antenna orientation
for maximum detection probability. The results, shown in Fig.
3, indicate that the proposed PSO scheme outperforms the
others, particularly with fewer UAVs. Specifically, it provides
a 7.94% improvement with 2 UAVs and a 7.21% improvement
with 3 UAVs over the ADPM-based scheme due to effective
SINR optimization. This improvement is attributed to the PSO
scheme’s ability to balance exploration and exploitation in
navigating non-convex spaces.

Fig. 4 illustrates the effectiveness of the proposed EBD
approach aided by proposed PSO optimization, which achieves
higher detection probabilities, particularly at lower transmis-
sion power levels. This advantage is due to the adopted
method does not require prior noise information, making it
reliable in dynamic environments. The results confirm that the
eigenvalue-based approach, combined with optimal deployment
and antenna orientation from the proposed PSO algorithm,
maintains high detection probabilities under diverse conditions.
Increasing the particle count Np further enhances detection
performance and algorithm robustness in multi-UAV sensing;
however, it raises computational costs, necessitating a balance
between performance and resource efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we enhanced multi-UAV cooperative sensing
by integrating EBD with a PSO-based optimization algorithm
to effectively navigate non-convex search spaces and jointly
optimize UAV deployment and antenna orientation. By in-
corporating a penalty-based approach within PSO, we guided
solutions toward feasible regions despite complex spatial con-
straints. Monte Carlo simulations demonstrated that our pro-

posed method outperforms the ADPM-based scheme, achieving
superior detection performance without the need for prior noise
knowledge, making it ideal for dynamic environments. This
work provides valuable insights for designing robust multi-
UAV systems, with applications in adaptive target tracking, dis-
tributed recognition, and dynamic monitoring. Future work will
investigate sensor fusion techniques to address inefficiencies in
UAVs detecting the same transmission.
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