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Abstract—Radar-based Human Activity Recognition (HAR) is pop-
ular because of its privacy and contactless sensing capabilities.
However, a major challenge in this area is the lack of large and
diverse datasets. In response, we present a novel framework that
uses generative models to transform textual descriptions into motion
data, thereby simulating radar signals. This approach significantly
enriches the realism and diversity of the dataset, especially for
infrequent but critical activities such as falls and abnormal walking.
Textual descriptions capture the semantic complexity of human actions, thereby improving intra-class diversity. Our
framework scales the data generation process by using a lightweight physics-based simulator and improves diversity
by controlling gait variation, multi-viewpoint adaptation and background noise modelling. The experiments show that data
diversity is a critical factor for fair model comparisons, and that the simulated data can effectively improve performance
through sim-to-real transfer learning.

Index Terms—radar simulation, text-driven motion synthesis, human activity recognition

I. INTRODUCTION

Radar sensing, known for its privacy and contactless sensing
capabilities, has become a growing area of interest in Human Activity
Recognition (HAR). The sensing pipeline can be divided into two
paradigms: one based on high resolution point clouds [1], the other
using Doppler velocity patterns [2]. Radar point clouds are typically
sparse due to the low angular resolution of radar and the weak reflection
from the human body. Improving spatial resolution typically requires
a larger aperture, which increases sensor size, power consumption and
cost. A promising alternative approach is to use motion signatures for
classification. Since frequency modulated continuous wave (FMCW)
radar can measure Doppler velocity at high resolution, the micro-
Doppler distribution of non-rigid body motion over time can serve
as a distinctive motion signature for human activity.

A number of recent studies [2], [3] have harnessed the power
of deep learning to classify radar micro-Doppler spectrograms. The
prerequisite for deep learning is a high quality dataset. However,
radar datasets are often orders of magnitude smaller than vision
datasets and with lack diversity. Radar data collection typically
involves volunteers performing a predefined set of activities. While
this may be sufficient for simple activities such as walking, it is
insufficient for less common activities such as falling or abnormal
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gait. These instructional activities often appear unnatural and lack
contextual richness and diversity, leading to issues with corruption
robustness [4].

To address the challenges of data collection, several studies have
focused on high-fidelity simulation for radar-based HAR tasks. This
process involves two main steps. The first is the acquisition and
extraction of skeletal information of the human pose, which can be
accurately captured using marker-based motion capture systems [5]
or estimated from videos [6]–[9]. The second step involves radar
simulation and signal processing to produce the micro-Doppler
spectrogram. In addition to the simulation, generative models, like
GAN [10], are also used to synthetic radar samples, but with the
problem of mode collapse and kinematic inconsistency. Although
these methods expand the potential sources of human activity data,
they still fall short in capturing critical activities such as falling,
which are infrequent in daily life and therefore underrepresented in
data collected by other modalities.

To overcome these difficulties, our work combines text-to-motion
generation and physics-based simulation to generate a diverse
synthetic dataset. Specifically, we exploit knowledge from large
language models (LLMs) and the power of generative models to
transform textual descriptions into human motion. We then use
physical simulation to generate radar micro-Doppler spectrograms
from the skelekton data.

The remainder of this letter is organised as follows. Section II
presents the proposed Text2Doppler pipeline. Section III first discusses
the necessity of using the dataset with diversity to compare models
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Fig. 1. Text2Doppler simulation pipeline

fairly, then introduces sim-to-real transfer learning to effectively use
the simulated data even without high fidelity. Finally, Section IV
concludes the paper and summarizes the whole work.

II. TEXT2DOPPLER SIMULATION PIPELINE

A. Text to Motion Generation

Our simulation pipeline, as shown in Fig. 1, starts with the
automatic generation of motion descriptions for daily indoor human
activities using LLMs. To avoid oversimplified motion descriptions,
we provide a database of motion properties in the prompts as
contextual information. These properties include elements such as
action, direction, body part involved, objects interacted with, and a
descriptive narrative. The inclusion of these fine-grained properties
significantly enriches the motion descriptions, resulting in more
detailed and diverse motion simulations.

After obtaining the motion descriptions, we directly use the pre-
trained model MoMask [11] for text-to-motion generation. MoMask
uses a generative masked modelling framework to convert textual
descriptions into 3D human motions. When inspecting the generated
results, we observe that the quality of the generated motion sequences
varies across categories, possibly due to the distributional shift
between the training dataset and our cases. For example, the generation
of falling motions often fails, while the quality of walking motions
is generally good. Therefore, it is necessary to add a fidelity check
module to discriminate the unrealistic examples. To achieve this,
we use the Spatial Temporal Graph Convolutional Networks (ST-
GCN) [12] for the classification of the skeleton sequences. The results
show that the model achieves 90.02% accuracy and 86.17% recall,
which is acceptable for fidelity checking and anomaly filtering.

TABLE 1. Database of Properties

Properties Items

Action walk, fall, sit, bend, lie down, stand up, climb, stretch,
squat, dance, run, jump, turn

Direction left, right, clockwise, counterclockwise, anticlockwise,
forward, back, up, down, straight

Body Part arm, foot, feet, hand, leg, waist, knee
Object stair, chair, floor, ball, handrail
Description slowly, carefully, fast, careful, slow, quick, happily, angry

B. View Control and Gait Speed Control

The different motion descriptions for a given activity class address
the semantic diversity of real-world data. In addition, we address

some physics-based diversity, including the different viewing angles
and different walking speeds for a given motion sequence. In the
traditional pipeline, such diversity is approximated at the received data
stage by data augmentation [4]. In comparison, introducing diversity
at the skeleton stage offers significant advantages by maintaining
physical fidelity and interpretability.

Regarding the change in viewpoint, it is important to note that,
as radar primarily measures radial velocity, different viewpoints can
lead to variations in the motion pattern. To account for viewpoint
changes, we first determine the main direction of the motion trajectory
using Principal Component Analysis (PCA). The first two principal
components represent the direction of motion. We then calculate
the new viewpoint location based on the desired angular difference,
ensuring that the distance from the start point of the motion remains
unchanged. For gait speed control, we start by retrieving the foot
trajectories of both feet. By identifying the peaks, we can divide
the whole trajectory into distinct segments. These segments are then
interpolated to either speed up or slow down the motion.

C. Radar Data Simulation

The generated motion data is stored as BVH (BioVision Hierarchy
format) files. These files contain the motion data, which is a sequence
of frames, each of which contains the position and orientation of each
body segment in the skeleton. In line with other gesture simulators [5],
[13], we approximate the body segments as ellipsoids. Assume that
each body part segment can serve as an ellipsoid parameterized by
two semi-axes of equal length 𝑎 and a principal semi-axis of length
𝑐. The radar cross section (RCS) 𝜎 of the 𝑖-th body segment can
then be approximated by the following equation [13]:

𝜎𝑖 =
𝜋𝑎4

𝑖 𝑐
2
𝑖(

𝑎2
𝑖
sin2 (𝜓𝑖) + 𝑐2

𝑖
cos2 (𝜓𝑖)

)2 (1)

where 𝜓𝑖 describes the aspect angle of the principal axis.
The intermediate frequency (IF) signal for each body segment

can then be calculated, and the total radar response is obtained by
superimposing all the responses. Suppose we use a FMCW radar
with carrier frequency 𝑓𝑐 , bandwidth 𝐵, chirp repetition time 𝑇𝑐ℎ𝑖𝑟 𝑝 ,
chirp duration 𝑇𝑐 and speed of light 𝑐. The IF signal for the 𝑙-th
chirp can be modelled as
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For each body segment, the range 𝑅 and the radial velocity 𝑣𝑟𝑎𝑑

can be calculated from the locations of the scattering points and the
radar. The amplitude 𝐴 can be calculated from the radar equation as

𝐴 =
√︁
𝑃𝑟𝐺 𝐼𝐹 =

√︂
𝑃𝑡𝐺𝑡𝐺𝑟

𝜆2𝜎𝐴𝑒

4𝜋𝑅4 𝐺 𝐼𝐹 (3)

where 𝑃𝑟 is the received power, 𝑃𝑡 is the transmitted power, 𝐺𝑡 is
the gain of the transmitting antenna, 𝐺𝑟 is the gain of the receiving
antenna, 𝜆 is the wavelength of the radar signal, 𝜎 is the RCS of
the target, 𝐴𝑒 is the effective aperture of the receiving antenna and
𝐺 𝐼𝐹 is the gain of the IF amplifier.

Once the IF signal has been obtained, the next step is to perform
analog-to-digital (ADC) sampling for each received channel. The
data acquired by the ADC is then organized into a three-dimensional
tensor. A range Fast Fourier Transform (FFT) is then performed
along the fast time dimension to obtain the range profile, followed
by a Moving Target Indication (MTI) filter to remove static clutter.
Finally, a Short-Time Fourier Transform (STFT) is applied to extract
the micro-Doppler spectrogram.

D. Background Noise Generation

The above simulations are noise-free and only take into account the
reflections from the human. Therefore, we need to add background
noise to the generated data to improve the generalisation. The
background noise for the micro Doppler spectrogram can be
introduced by system noise, sensor noise and environmental factors.
Instead of explicitly modelling these complex noises, we learn the
background noise in a supervised manner. Specifically, we use real
data collected in empty rooms to train a VQ-VAE [14] to learn
the background reflections and add randomly generated background
noise to the Doppler spectrogram during the data simulation process.

III. EXPERIMENTS AND RESULTS

A. Dataset Specification

We design 8 classes of daily activities for the dataset, including
normal walking, abnormal walking, running, falling, sitting, bending,
jumping and dancing. For each, we generate 200 motion descriptions
per class and 20 ten-second data samples per description. For each
data, the viewing angle is randomly selected within 15 to 15 degrees.
We then use the fine-tuned ST-GCN model to remove the ambiguous
data, resulting in a filtered high quality dataset with a size of 19,165
samples. We also generate a simple version of the dataset with
the same size and data distribution, but less motion diversity, by
generating the data samples from the same motion descriptions.

Due to the randomness in the generation, the motion data generated
for each description are diverse with respect to length, moving
direction and detailed motion content. In particular, for the safety
critical activities, we design diverse motion descriptions to account for
the intra-class variance of these activities. For example, for falling,
we consider three types of falls, including slipping, tripping and
collapsing, as shown in Fig. 2. For abnormal walking, we describe
different walking styles, such as Parkinson’s gait, waddling gait,
fixation gait, ataxic gait, scissor gait and stepping gait.

For the simulation we model a 77 Ghz radar with the same
configuration as described in [3]. For the signal processing, the FFT
points and window size are set to 256. A significant overlap of 128

A person slips, 
then falls backwards
and sits on the ground.

A person suddenly faints, 
then falls straight down 
and lies on the ground.

（a） （b）

A person trips over a ball, 
then falls forward 
and onto the ground.

（c）

Fig. 2. Generate different types of falling from text descriptions

samples between windows is implemented to increase the resolution
in the time-frequency spectrum, which is essential to capture subtle
changes in the Doppler signatures.

B. Importance of Dataset Diversity

In this subsection, we demonstrate the importance of dataset
diversity in model comparisons. The test models include VGG-7[15],
ResNet-18[16], ViT-tiny[17], CRNN[18], and Conv1D-LSTM[2].
According to Table 2, it can be observed that for the simple
case, all evaluated models achieve a remarkably high accuracy.
This observation suggests that datasets without motion diversity are
insufficient to effectively benchmark the capabilities of these models.
Conversely, in the context of more challenging datasets, it is evident
that the larger convolutional networks significantly outperform both
the lightweight RNN-based models and the ViT models.

TABLE 2. Classification Performance

Model
Accuracy(%)

Params(G) FLOPs(M)
Text2D Simple Text2D Hard

Conv1D-LSTM 98.26 80.80 0.008 0.111
CRNN 99.65 86.95 0.415 0.895
VGG-7 98.44 87.87 2.095 0.298
ResNet-18 98.96 91.26 1.824 11.180
ViT-Tiny 99.48 79.64 1.433 7.261

From the confusion matrix shown in Fig. 3, it is clear that the
improvement in performance of the convolutional network is primarily
due to its improved ability to distinguish between walking and
abnormal walking, and between falling and dancing. This distinction
is critical as the detection of abnormal walking and falling is often the
core functionality of commercial radar sensor applications. Although
a more compact RNN-based model may be sufficient for detecting
simple daily activities, the use of a larger convolutional network
proves more effective in accurately identifying complex movements,
such as dancing, and detailed motions, such as abnormal walking.

C. Sim2Real Transfer Learning

In Fig. 4 we show some examples between the real world
measurements and the simulated data. We can see that the simulated
data show similar motion patterns to the real data, but the details
show differences. Because of this distributional shift, we adopt the
sim-to-real transfer learning paradigm to utilize the simulated data.
For this analysis, we test an extreme case where the small-size dataset
[3] contains 11 types of activity with only 60 samples per class. The
direct training of ResNet-18 on this dataset presented difficulties due
to the instability of the training process. Consequently, we utilized a
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Fig. 4. Comparisons between real-world measurements and simu-
lated data for some typical activities

classical machine learning classifier as the baseline. Specifically, we
extract HOG features [19] from the spectrogram and train an SVM
classifier. For the sim2real transfer learning, we pre-train ResNet-18
on the simulated dataset, followed by fine-tuning on the real dataset.

We investigate three transfer learning strategies, including linear
probing, last layer fine tuning and full model fine tuning [20].
The results of our transfer learning experiments, as detailed in
Table 3, show that linear probing has even lower performance than
the machine learning method trained on the real dataset and exhibits
slow convergence rates due to the distributional shift. Last layer fine
tuning slightly improves the performance compared to the machine
learning method. The best results, characterised by fast convergence,
are achieved by full model tuning, which jointly tunes the feature
extractor and the classification head. We further test these methods on a
larger dataset [21], and the results are consistent. These results suggest
that pre-training on simulated data, even if not high fidelity, is still
advantageous to stabilize convergence and transfer prior knowledge
to the real dataset.

TABLE 3. Performance in Real World Data

Method Average Accuracy (%) Average Number of Epochs

HOG + SVM 76.12 -
Linear Probing 70.31 74
Last Layer Fine Tuning 77.08 52
Full Model Fine Tuning 84.72 18

IV. CONCLUSION

In this study, we present a text-to-radar simulation framework
designed to enable large-scale radar simulations that are particularly
suited to HAR tasks. A notable advantage of this model is its ability
to significantly improve data collection for less commonly observed
activities, such as falling and abnormal walking. Experiments suggest
that dataset diversity is critical for fair model performance and the
effectiveness of sim2real transfer learning. Future research could focus
on improving the fidelity of the simulation by utilizing generative
models and considering motion interferences.
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