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Abstract—Radar-based human activity recognition (HAR) is
a popular research field. Despite claims of high accuracy on
self-collected datasets, the ability of these models to handle
unexpected scenarios has been largely overlooked. This work
introduces a framework for analyzing corruption robustness
of radar micro-Doppler spectrogram classification. A set of
corruptions are categorized, applied, and systematically tested on
common model architectures. Diverse training methods, including
adversarial training, cadence velocity diagram (CVD) transfor-
mation and data augmentation, are explored. The performance
is evaluated on two tasks: indoor HAR and continuous aquatic
HAR. Our study unveils several insights. Firstly, relying solely
on accuracy may not adequately assess model performance due
to dataset limitations. All well-trained models exhibit sensitivity
to corruptions. Secondly, deeper convolutional neural network
(CNN) models excel in both accuracy and robustness, but
confront the problem of overfitting to background. Thirdly,
adversarial training enhances robustness against corruptions,
albeit at the cost of a slight decrease in accuracy. Lastly,
combining data augmentation and adversarial training achieves a
balance between accuracy and robustness. In essence, our study
contributes to a more profound understanding of the complex
interplay between model architecture, classification accuracy, and
corruption robustness in radar HAR tasks.

Index Terms—human activity recognition, micro-Doppler, ro-
bustness

I. INTRODUCTION

The issue of robustness is a prominent research topic within
the field of machine learning. Despite the impressive accuracy
achieved by deep neural networks in various classification
tasks, researchers have discovered that these networks are
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highly sensitive to small perturbations. The categorization pre-
sented in [1] establishes three kinds of robustness: adversarial
noise robustness, natural noise robustness, and system noise
robustness. Adversarial robustness, often considered the worst-
case scenario, involves deliberately crafted small perturbations
that lead neural networks to make incorrect predictions. On-
going debates revolve around the feasibility of achieving both
adversarial robustness and generalization simultaneously [2],
[3]. The second type is natural noise robustness, also referred
to as robustness under common corruptions [4]. This type
of noise originates from observed objects or environmental
factors. While the ideal approach is to capture this noise
through data collection, real-world challenges often make it
difficult to gather these unusual cases. As a result, natural noise
is often overlooked in many datasets. The third type is system
noise, which refers to noise that occurs in sensor models.
Examples include noise introduced in the signal processing
pipeline or the data transmission module. While much of the
research on radar-based human activity recognition (HAR)
focuses on adversarial robustness, implementing adversarial
attacks at the data level can be tough due to the complex signal
processing pipeline in real radar applications. In contrast, the
last two types of robustness are more commonly observed but
are not as well-studied. In this study, our main focus is on the
last two categories: specifically, the robustness against natural
noise and system noise in radar HAR tasks. In the subsequent
sections, we will use the term ’corruption robustness’ to
collectively refer to both forms of robustness.

The corruption robustness has drawn significant research at-
tention across various modalities. In the case of visual images,
which are high-dimensional and rich in semantic information,
the design space for image corruptions is substantial, making
it an extensively studied area. Corruptions tailored to images
typically involve noise and blur effects induced by the camera
sensor [4]. Additionally, motion blur introduced by observed
objects and environmental factors such as illumination [5], [6]
can also contribute to the natural corruptions. In the audio
domain, similar to radar, time-frequency analysis plays an
important role in signal classification. Compared to radar
signals, audio signals are well separated across different fre-
quency domains, showcasing distinct patterns in both temporal
and frequency dimensions. This distinctiveness underscores
the need for perturbations to adhere to strict constraints,
ensuring the preservation of the inherent natural characteristics
of the audio signal. Therefore, the perturbations involves only
additive noise and room reverberation. The robustness also
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captures attention in the field of point clouds [7], [8], [9].
Subtle local perturbations are introduced to spatial dimensions
of points without undermining the overall structure. Examples
include point jittering, alongside the addition or removal of
local points.

In comparison to other fields, radar HAR stands out as a
highly promising task for the study of robustness, owing to
several factors. Firstly, the micro-Doppler spectrogram serves
as the motion signature containing the superimposed reflec-
tions from different parts of the human body. Perturbations
in human motion can exhibit substantial variations while
retaining a sense of inherent naturalness. Secondly, the quality
of radar spectrograms is closely linked to the underlying signal
processing procedures. System noise introduced during signal
processing can be viewed as a form of corruption. Thirdly, the
majority of radar datasets lack diversity. Data collection for
radar HAR often takes place in controlled laboratory environ-
ments, characterized by simplified conditions. Despite the ex-
tended time duration of the collected data, the diversity within
these datasets remains limited. Consequently, models trained
on these datasets are at risk of overfitting to features that may
not be representative, such as background noise patterns. This
concern is especially noteworthy given the prevalence of deep
learning models with high capacity.Therefore, it is beneficial to
include robustness as an additional metric to assess the overall
generalization of the trained model.

In this paper, we introduce a robustness analysis framework
for micro-Doppler spectrogram classification tasks. Our con-
tributions can be summarized as follows:

• Taxonomy and Design of Corruptions: We categorize
diverse corruptions affecting human activities and radar
signals into three classes: temporal, Doppler, and intensity
domains, outlining strategies to manage their severity for
balanced evaluation.

• Benchmarking Model Architectures: Our evaluation in-
volves various model architectures for the radar-based
HAR task. These architectures include Conv1D-LSTM,
Convolutional RNN (CRNN) [10], and different CNN
variants [11], [12], [13]. We investigate their performance
across two HAR scenarios: indoor HAR and continuous
aquatic HAR. Our findings indicate that CNNs with
higher capacity yield superior results in terms of both
classification accuracy and robustness, but risk overfitting.

• Enhancing CNN Robustness: Our efforts to improve CNN
robustness involve three approaches: using cadence veloc-
ity diagram (CVD) [14] as input, adversarial training [15],
and data augmentation. While CVD has limited impact,
adversarial training and data augmentation improve ro-
bustness and mitigate overfitting in deeper CNNs.

The remainder of this article is organized as follows. Sec-
tion II introduces related works from both the perspectives
of radar HAR and robustness. Section III describes the signal
processing pipeline for micro-Doppler spectrogram extraction.
Section IV elaborates on the definition and taxonomy of cor-
ruptions specifically designed for radar HAR tasks. Section V
describes the model architectures and training methods for
benchmark. Section VI specifies the datasets and experimental

settings. Section VII summarizes and discusses the results
with respect to classification accuracy and robustness. Finally,
section VIII concludes this article.

II. RELATED WORKS

A. Radar-based HAR

Recently, the field of radar perception has witnessed sig-
nificant advancements thanks to the progress in deep learning
techniques [16]. Yang et al. [17] summarize model perfor-
mance on public radar HAR datasets, showing significant
improvements in this field. Despite achieving high accu-
racy, radar datasets often feature simplistic activity designs,
laboratory environments, and ideal conditions. These limi-
tations encourage the introduction of new challenges, such
as continuous activity recognition, which involves identify-
ing specific activities within sequential activities with un-
known duration [18]. The continuous characteristics encap-
sulates the temporal diversity inherent in human activities.
Furthermore, researchers also address variations associated
with motion patterns, signal processing, and environments.
Abdulatif et al. [19] use a generative adversarial network
(GAN) to denoise micro-Doppler spectrograms, improving
noise robustness. Yang et al. [20] propose a neural network
module to generate super-resolution spectrograms, overcoming
the limitations of the time-frequency uncertainty present in
temporal-frequency analysis. Patel et al. [21] highlight the
sensitivity of neural networks to domain shifts, corruptions
and unknown objects, and underscore the problem of high-
confidence incorrect predictions. A related work is the study
by Czerkawski et al. [22], which shows CNN’s sensitivity
to subtle temporal shifts and adversarial examples in micro-
Doppler classification. Training on adversarial examples and
augmented samples improves robustness. Models operating on
CVD representations also show adversarial robustness. Nev-
ertheless, their evaluation of robustness is conducted within
a classification task framework, rather than the robustness
analysis framework employed in our study.

B. Robustness to Corruptions

Research on robustness spans across various modalities,
including images [4], videos [5], [6], and point clouds [7],
[8], [9]. The consistent findings underscore the vulnerability
of neural networks to corruptions in the context of supervised
learning. Data augmentation techniques have proven effective
in enhancing robustness. AugMix, proposed by Hendrycks et
al. [23], combines augmented views of images while preserv-
ing both semantics and local statistics, proving its effective-
ness in enhancing robustness. Rusak et al. [24] demonstrate
improved robustness with simple augmentations like Gaussian
and Speckle noise. Modas et al. [25] prioritize semantically-
preserving augmentation, and propose a strategy that samples
transformations from a max-entropy distribution to preserve
naturalness. FourierMix, introduced by Sun et al. [26], utilizes
Fourier-based transformations to expand spectral coverage.
Zhang et al. [27] design FourierShuffle, which shuffles high-
frequency components to mitigate their impact. Furthermore,
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the connection between data augmentation and domain adap-
tation is gaining attention. Schneider et al. [28] leverages the
unlabeled corruption data to adapt batch normalization statis-
tics. Xie et al. [29] discover that augmented data improves
corruption robustness by aligning perceptual similarities be-
tween training and test data.

In addtion to data augmentation, the interplay between
adversarial and natural robustness is also investigated. Tang et
al. [1] and Kireev et al. [30] both demonstrate the capability
of Lp adversarial training against common image corruptions
with proper perturbation radius. The impact of model architec-
ture on robustness is also a topic of discussion. Among models
of comparable size, Tang et al. [1] highlight CNNs’ superior
robustness against natural and system noises over other model
architectures like Transformers. Hooker et al. [31] observe
robustness degradation during the compression of models.
Timpl et al. [32] clarify that capacity reduction, rather than
sparsity, drives robustness loss due to network compression.

III. SIGNAL PROCESSING PIPELINE FOR HAR

Radar sensors are capable of detecting Doppler frequency
shifts resulting from relative motion. In scenarios involving
moving human limbs, subtle micro-motions introduce fre-
quency modulations as sidebands around the primary Doppler-
shifted frequency [14]. This dynamic Doppler pattern, known
as the micro-Doppler signature, is examined through time-
frequency analysis. In this section, we will elaborate on
the signal processing pipeline for extracting micro-Doppler
spectrograms and subsequently analyze their characteristics in
the context of HAR tasks.

A. Micro-Doppler Spectrogram Extraction

Commercial radar systems transmit frames of frequency-
modulated continuous wave (FMCW) chirp sequences to illu-
minate scenes. The received signals are mixed with the trans-
mitted signals before being down-converted to an Intermediate
Frequency (IF) at which an Analogue to Digital Converter
(ADC) samples the mixed signal. An Analogue to Digital
Converter (ADC) samples the mixed signal, with sampling
index dimension referred to as the ’fast time.’ The chirp
dimension corresponds to the ’slow time.’ For simplicity, we
use only one received channel to extract the micro-Doppler
spectrogram. As illustrated in fig. 1, the data acquired by
the ADC is organized into a three-dimensional tensor, with
dimensions corresponding to chirp (x-axis), ADC samples (y-
axis), and frames (z-axis). The micro-Doppler spectrogram can
be computed in several ways. For scene-based activity classifi-
cation, the tensor is concatenated along the slow time, forming
a lengthy 2D multidimensional sequence. Then, a range Fast
Fourier Transform (FFT) is conducted along the fast time
dimension, followed by Moving Target Indication (MTI) [33]
to mitigate static clutters. Short-time Fourier transform (STFT)
with a window size spanning the entire time duration is used
to extract the micro-Doppler spectrogram, denoted as:

S(t, fd) = STFTf∈w(FFTrange(RADC)) (1)

For continuous activity recognition, the storage and con-
catenation of multiple frames along the temporal dimension is
infeasible. Alternatively, a simplified approach is employed to
extract the micro-Doppler spectrogram in real-time. Following
the conventional signal processing pipeline, a Range FFT,
MTI, and Doppler FFT are applied within a single frame. This
yields the Range-Doppler (RD) map, represented as:

RD(fr, fd, t) = FFTDoppler(FFTrange(RADC)) (2)

The RD map is then summed over the region of interest
(ROI) along the range dimension, producing a Time-Doppler
(TD) vector at time step t, expressed as:

TD(t, fd) =
∑

fr∈ROI
RD(fr, fd, t) (3)

Stacking TD vectors along temporal dimension results in
the micro-Doppler spectrogram, also known as TD map. This
procedure can be regarded as an STFT with a window size
equal to one frame duration. Smaller window sizes yield
decreased frequency resolution but increased temporal res-
olution, making them well-suited for continuous activities
characterized by frequent motion changes.

B. HAR Task

For the HAR task, the micro-Doppler spectrogram encodes
motion signature which can be utilized for classification of
different motion patterns. The human body can be thought
of non-rigid and modelled as multiple scattering points from
torso and limbs. Suppose their corresponding scattering areas
are AT and ALk

, respectively, and the instantaneous velocities
at time t occupy several Doppler frequency bands fT and fLk

,
respectively. The motion signal components can be expressed
as

|S(t, fd)|2 = |ξTATS (t, fT)|+
K∑

k=1

|ξLk
ALk

S (t, fLk
)|

(4)
where ξ is the attenuation coefficient of different body parts,
which is a function of viewing angle and range. The overall
spectrogram is the composed of motion signal components,
background environment components and noise components.

The micro-Doppler spectrogram of human activity exhibits
the following characteristics:

• The frequency of the moving torso is usually located at a
narrow low frequency band. Moving limbs, on the other
hand, can generate high frequencies and have a wider
Doppler spread.

• The intensity of high-frequency components from limbs
with smaller scattering areas is weaker than that of the
torso.

• The motion is a function of time, and oscillatory limbs
introduce a periodic motion pattern.
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Fig. 1. Signal Processing Pipeline

IV. CORRUPTIONS FOR MICRO-DOPPLER SPECTROGRAM

A. Definition of Corruptions
Classifiers often encounter scenarios where they must clas-

sify low-quality or corrupted inputs. Essentially, corruption
robustness measures the average performance of the classifier
when faced with various corruptions from the set C, while
adversarial robustness assesses the classifier’s worst-case per-
formance when dealing with small additive perturbations.

It is important to acknowledge that we cannot really mea-
sure the exact occurrence probability of specific corruptions.
Therefore, we often make the assumption that PC(c) is equal
for all corruptions. As a result, the primary focus shifts
towards designing an appropriate set of corruption functions
C. To effectively design the set of corruption functions, several
important factors should be taken into account. First and
foremost, the choice of corruptions should be aligned with real
world scenarios. These corruptions should maintain physical
fidelity to ensure that the evaluation remains meaningful and
realistic. Secondly, the definition of what constitutes a ’corrup-
tion’ is often dataset-dependent. The infrequent occurrence of
a corruption is defined based on the perspective of the target
dataset. For instance, if a specific type of corrupted data is
well-captured in the dataset, it may not be considered as a
corruption. Conversely, for datasets with limited data diversity,
some common data augmentations might also be considered
as corruptions.

B. Corruption Taxonomy for Radar HAR
We establish a taxonomy for categorizing a diverse range of

corruptions for radar HAR task, capturing variations in both
human activities and radar signal processing complexities.
These corruptions can be organized into three primary classes:
Doppler domain, temporal domain, and intensity domain.

1) Corruptions in Doppler Domain: The frequency domain
contains valuable information about the distribution of energy
in terms of Doppler velocity. While the primary velocity
of the human body is the main component, the limbs of a
human introduce notable spread along the Doppler dimension.
Instead of suppressing this spread, we can leverage it for
distinguishing between various human activities. To this end,
we have devised three types of corruptions that are applied in
the frequency domain as depicted in fig. 2.

The first type involves scaling along the Doppler dimension,
which can be interpreted as variations in the orientation of
objects. Given that Doppler velocity corresponds to radial ve-
locity, projecting the full velocity onto the observing direction

is a nonlinear function of orientation. Therefore, recovering
the full velocity and reprojecting it to different orientations
is challenging due to the absence of spatial information.
Kern et al. [34] address this problem by data augmenta-
tion through simulation, but we take a simpler approach by
slightly scaling the Doppler dimension. This approximation is
sufficient to capture the variance and serves as a robustness
test. The second type is Doppler jittering, where the energy
in neighboring cells is randomly shuffled. This captures the
randomness in the scattering point locations. By disrupting the
local structure, it serves as a test of whether the neural network
can effectively utilize global information for classification. The
final type involves changing the FFT resolution by using fewer
FFT points. This manipulation explores the effect of reducing
frequency resolution on classification performance.

2) Corruptions in Temporal Domain: We design four types
of corruptions that target the temporal dimension, correspond-
ing to variations along the x-axis. The first type involves
temporal scaling, where the temporal frames are stretched
or compressed to model variations in motion change or
periodicity. The second type, temporal drop, simulates the
occurrence of frame drops that could happen due to unreliable
connections during data transfer. The third type, temporal
STFT, is achieved by utilizing a larger window size in the
temporal dimension. Lastly, the fourth type, temporal masking,
randomly masks out consecutive temporal sequences within
the spectrogram. This type of corruption mimics scenarios of
occlusion, where parts of the activity are not captured.

3) Corruptions in Intensity Domain: We implement two
kinds of corruptions in intensity. The first type involves
enhancing the intensity of background cells to intentionally
reduce the SNR. This process begins with the application of
the Cell Average Constant False Alarm Rate (CA-CFAR) de-
tector [33] to distinguish between foreground and background
cells. Then, we increase the intensity of background cells to
lower the SNR. The second type aims to modify the SNR by
introducing local random noise, specifically Gaussian white
noise, across the entire spectrogram. This particular corruption
simulates real-world scenarios where signals can be corrupted
by various sources of interference, clutter, or distortion.

C. Controlled Corruption Severity

Following the conventions in studying robustness across
other modalities, we also apply each type of corruption at
different severity levels. However, controlling the severity of
corruptions demands a systematic and numerical approach
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Fig. 2. Examples of Corruptions for Radar HAR

rather than arbitrarily assigning severity values. This task is
inherently complex due to the presence of distinct physical
constraints associated with each type of corruption. To over-
come this challenge, we categorize the corruptions into three
types based on their underlying physical interpretations.

The first type encompasses geometric transformations, such
as scaling and downsampling. In implementing these transfor-
mations, our primary consideration is on preserving physical
realism and adhering to the constraints imposed by the under-
lying physical processes. For instance, when applying temporal
scaling to activities like walking, we ensure that the scaled data
remain within the typical human walking speed range of 1.0
to 1.6 meters per second.

The second category involves structural corruptions, includ-
ing drop and jittering. These corruptions introduce disruptions
to the local structure of the original data. To assess the impact
of local perturbations on global information, we leverage the
structural similarity index (SSIM) [35] as a metric to control
the severity. The SSIM is a widely accepted measure in image
quality assessment that jointly takes into account the similarity
in terms of luminance, contrast, and structure.

The third type of corruptions applies to intensity. Given that
the intensity of motion can exhibit fluctuations contingent on
the type of motion, motion scale, and the object’s distance,
we adopt an adaptive-threshold-based SNR measurement to
quantify the extent of signal corruptions. In the context of
spectrograms, the adaptive threshold is computed by applying
a CA-CFAR detector to the windowed spectrogram. This
process separates the reflections into two categories: human
activities denoted as Ωs and background noise signals denoted
as Ωn. Then, the SNR is calculated according to

SNRtf = 10 log10

(
mean |S (t, fd)|2(t,fd)∈Ωs

mean |S (t, fd)|2(t,fd)∈Ωn

)
(5)

V. MODEL ARCHITECTURE AND TRAINING METHODS

A. Model Architectures

As depicted in fig. 3, three paradigms for processing radar
spectrograms using neural networks are showcased. The first

paradigm views the spectrogram as a multi-dimensional tem-
poral sequence. Each time step is processed using lightweight
1D convolutions, capturing frame-wise features. LSTM mod-
ules are then employed to model temporal relationships be-
tween frames. The second paradigm interprets the spectro-
gram as an image and leverages CNN architectures. 2D
convolutional kernels slide across the spectrogram in both
frequency and temporal dimensions to capture local patterns.
A hierarchical structure expands the receptive field, enabling
extraction of global information. The third paradigm combines
elements of both previous paradigms by using 2D convo-
lutional layers for feature extraction and LSTM to model
the temporal dimension. In order to reduce the 2D feature
maps into a 1D temporal sequence, the kernel size of pooling
layers is specifically designed to condense the channels along
the frequency dimension while preserving temporal resolution
along the temporal dimension.

Given the focus on benchmarking different paradigms rather
than introducing novel architectural designs, complex models
are avoided. Four representative model architectures are eval-
uated: Conv1D LSTM, CRNN [10], a shallow CNN named
VGG-7 [11], and a deeper CNN termed ResNet-18 [12].
Additionally, we explores the integration of Convolutional
Block Attention Module (CBAM) [13] attention into ResNet
to investigate its effects.

1) Conv1D LSTM: For Conv1D LSTM, the input spec-
trogram is treated as a multidimensional time series. In our
implementation, the initial layer of this architecture consists
of a stack of two 1D convolutional layers. These convolutional
layers use kernel sizes of 4 and 3, and they have channel
sizes of 32 and 64, respectively. The 1D convolutions are
applied along the Doppler dimension to extract frame-wise
features from the spectrogram. Subsequently, the extracted
features are fed into bidirectional LSTM cells, which capture
temporal relationships between features. Finally, the output of
the LSTM cells at the last time step is sent to a fully connected
(FC) layer with softmax for classification.

2) CRNN: CRNN employs 2D convolution for feature
extraction and progressively compresses the Doppler dimen-
sion through pooling layers. The initial convolutional layer
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Fig. 3. Typical Architectures to Process Spectrogram

comprises a stack of three 2D convolutional layers with kernel
sizes of 5, and channel sizes of 128, followed by maxpooling
and ReLu. The max pooling layer is specially designed so that
the feature map is downsampled in the frequency dimension
with a large step, and in the final layer the frequency dimension
is reduced to one and can be squeezed. Then, the feature
map becomes a 2D temporal sequence, which is sent to a bi-
directional LSTM for modelling the sequential information,
followed by an FC layer with softmax for classification.

3) VGG: VGG is a CNN architecture utilizing small kernels
to gradually increase receptive fields. To assess shallow CNNs,
we construct a light-weight VGG-7. In our implementation,
we reduce convolutions to 7 layers and replace FC layers with
global average pooling. This consists of 7 convolutional layers,
all 3 × 3. The first 3 layers have 32 channels, then 2 layers
each with 64 channels, and 1 layer with 128 channels. Max-
pooling of size 2×2 is applied after each convolutional blocks.
Finally, global average pooling reduces feature maps to 1D
vector, which are fed to a softmax FC layer for classification.

4) ResNet: ResNet, built by stacking multiple residual
blocks, stands as the most prominent CNN architecture in
addressing the vanishing gradient problem and enabling the
efficient training of very deep networks. Each residual block
is comprised of two sequential 3×3 convolutional layers and a
residual connection. This residual connection performs identity
mapping, directly connecting the input of a residual block to
its output. The final output of the block is determined by
adding the residual with the output from the convolutional
layers. Specifically, ResNet-18 comprises five modules, with
the first module featuring a single convolutional layer and
the subsequent four modules employing two stacked residual
blocks each.

5) ResNet with CBAM Attention: CBAM [13] is an atten-
tion mechanism enhancing CNN’s representational power by
modeling interdependencies among channels and spatial loca-
tions. It has two sub-modules: channel attention emphasizing
’what,’ and spatial attention emphasizing ’where.’

Channel attention aggregates spatial information using
average-pooling and max-pooling. Shared Multi-Layer Per-
ceptron (MLP) processes this information to learn channel
importance. The channel attention weight Wc is computed as
follows:

Wc = σ(MLP(favg(X)) + MLP(fmax(X))) (6)

where favg(X)and fmax(X) represent the average pooled and
max pooled feature maps. MLP denotes a shared MLP with
one hidden layer and σ is the sigmoid activation function.

Spatial attention compresses feature maps along channel
dimensions through max-pooling and average-pooling. Con-
catenating the resulting feature maps, they are passed through
a convolutional layer to summarize spatial information. Spatial
attention weight Ws is computed as:

Ws = σ(Conv(fpool(X); fmax(X))) (7)

where fpool(X) and fmax(X) are the average-pooled features
and max-pooled features across the channels. Conv denotes
a 7 × 7 convolutional layer and σ is the sigmoid activation
function.

The channel attention and spatial attention are sequentially
applied to reweight the original feature maps. In our imple-
mentation, CBAM is introduced to the final feature maps in
each basic module of the ResNet-18 architecture.

B. Training Methods

1) Adversarial Training: Adversarial training is reported
to be beneficial for corruption robustness [1], [30]. This
technique involves augmenting the training data with carefully
crafted adversarial examples. By exposing the model to these
adversarial examples during training, it learns to better gener-
alize and improve its resistance to perturbations at test time. In
this study, adversarial examples are constructed using a multi-
step first-order method known as projected gradient descent
(PGD) [15]. The PGD perturbation for a given input x can be
expressed as follows:

δt+1 = δt + α · sign(∇xL(f(x+ δt), ytrue)) (8)

where δt+1 denotes the adversarial perturbation at iteration
t + 1, α is a hyper paratmeter that adjusts the learning rate,
f(x + δt) is the model’s prediction on the perturbed input,
ytrue is the true label of input x, and L represents the loss
function. The perturbation is updated over multiple steps with
a small learning rate α until the maximum iteration is reached.
After each update, the current perturbation δt+1 is projected
onto a set of constraints. For adversarial examples computed
on normalized data, this constraint is typically x+ δt ∈ [0, 1].
Additionally, adversarial examples are constrained to an L∞
ball of size ϵ around x. In the training process, the original
training dataset is dynamically augmented with these adver-
sarial examples at each epoch.
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2) Cadence Velocity Diagram: The CVD representation can
be computed by applying another FFT along the temporal
dimension of the micro-Doppler spectrogram:

CVD(ft, fd) = FFTt(S(t, fd)) (9)

The reversible nature of the FFT operation ensures that the
CVD operates as a transformed representation without any loss
of information. The notable advantage of the CVD lies in its
ability to capture information related to periodic features.

3) Data Augmentation for Image: Visual classification
tasks often require invariance to color variations and geometric
transformations. As such invariance cannot be intrinsically
ensured by network architecture, these inductive biases are
introduced through data augmentation. Common image data
augmentation techniques are conveniently integrated into deep
learning frameworks like PyTorch and TensorFlow, and many
works directly apply these techniques to radar tasks. However,
it is important to note that radar spectrogram have different
interpretation compared to images. In this work, we consider
three kinds of data augmentation and examines their applica-
bility to radar spectrograms.

The first type of augmentation involves color jittering, which
adjusts the brightness and contrast of the image. Notably, in
an image, changes in brightness correspond to variations in
intensity in radar spectrograms, while alterations in contrast
can approximate changes in SNR in radar spectrograms.

For geometric transformations, we employ the random re-
sized crop augmentation, which randomly crops a section of
the image and resizes it to the original size. For radar spec-
trograms, the transformation scale must be chosen carefully to
avoid unrealistic data.

Lastly, Gaussian blur is randomly applied to the image. It
involves convolving the original image with a Gaussian kernel,
which approximates the reduction in resolution that can occur
in radar spectrograms.

4) Spec Augmentation for Audio: Data augmentation tech-
niques designed for audio spectrograms take into account the
distinct temporal and frequency dimensions. These methods
aim to enhance the robustness of the features against variations
in the time direction, partial loss of frequency information,
and partial loss of small segments of speech. One prominent
approach, known as SpecAug [36], employs the following
three types of augmentation.

The first augmentation method is time warping. It involves
cropping consecutive frames and moving them along the tem-
poral dimension by a distance of w. The entire sequence is then
interpolated using spline-based grid interpolation. Warping
augmentation does not alter the data length, thereby avoiding
information loss that can occur with scaling and cropping.

The second augmentation method is frequency masking,
which involves masking consecutive frequency channels in the
spectrogram. Specifically, f consecutive frequency channels
are masked, where f is chosen from a uniform distribution
between 0 and the frequency mask parameter F .

The third augmentation method is time masking. Similarly,
time masking is applied so that t consecutive time steps are
masked, where t is first chosen from a uniform distribution
between 0 and the time mask parameter T .

VI. DATASETS AND EXPERIMENT SETTING

A. Radar HAR Datasets

As shown in table I, two datasets are chosen for bench-
marking. The first is the Glasgow indoor HAR dataset [37],
which employs a 5.8 GHz FMCW radar featuring a 400 MHz
bandwidth and 1 ms chirp duration. The dataset consists of
recordings from 20 volunteers performing six different activi-
ties: walking, sitting down, standing up, picking up an object,
drinking water, and falling. Each activity class comprises 300
data instances, and each data instance lasts for 10 seconds.
During the signal processing stage, the entire sequence is
treated as a single sample, and a STFT with a window size
equal to the entire sequence duration is applied to extract
the spectrogram. The second dataset [38] focuses on aquatic
human activity recognition. For this dataset, a 77 GHz FMCW
radar with 1.7 GHz bandwidth, 128 chirps, and 0.33 ms chirp
duration is used. Five activities including floating, struggling
and three swimming styles (backstroke, breaststroke, freestyle)
are recorded for a consecutive 20 or 40 seconds for each
recorded sequence. A 128-point Doppler FFT along slow time
is applied in signal processing to obtain TD maps. Utilizing
a small frame length of 20 with a 0.5 overlap, each class of
activity consists of approximately 600 data instances. Notably,
swimming activities exhibit variable and prolonged periods,
making it highly probable to encompass incomplete motion
patterns within a data instance. Also, submerged bodies lead
to weaker reflected energy, further complicating the task of
accurately discerning different activities.

TABLE I
RADAR CONFIGURATION

Glasgow Indoor HAR ZJU Aquatic HAR

Operating Frequency 5.8 GHz 77 GHz
Bandwidth 0.4 GHz 1.7 GHz
Chirp Time 1 ms 0.33 ms
Number of ADC per Chirp 128 256
Number of Chirp per Frame 128 128

B. Corruption Implementation

As explained in section IV, we have categorized the cor-
ruptions into three distinct classes and a total of nine possible
types. In the case of the aquatic dataset, these corruptions
are applied to entire sequences before dividing them into
individual instances, ensuring consistent neighboring frames.
The detailed settings are shown in table II. For each class of
corruption, a base value is chosen and subsequently scaled
according to different levels of severity.

C. Experiment Setting

Our approach directly employs raw micro-Doppler spectro-
grams as inputs. These spectrograms are resized to dimensions
of (224, 224) for compatibility with common image-based
network architectures. Input normalization is performed using
precomputed mean and standard deviation values from all
training samples. Our evaluation covers five distinct archi-
tectures: Conv1D LSTM, CRNN, VGG-7, ResNet-18, and
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TABLE II
CORRUPTION CONFIGURATION

Corruption Type Base Scaling Factor

Temporal Resolution Window Size 128 [2, 0.5, 0.25, 0.125]
Temporal Drop Step Time Step 10 [1, 2, 3, 4, 5 ]
Temporal Scaling Ratio X-Axis Length 128 [0.5, 0.8, 1.4, 1.7]
Temporal Mask Ratio Base Percentage* [0.9, 0.8, 0.7, 0.6, 0.5]
Doppler Resolution FFT Point 128 [0.5, 0.25, 0.125]
Doppler Jittering Ratio Kernel Size (1× 1) [2 ,3 ,4 ,5 ,6 ]
Doppler Scaling Ratio Y-Axis Length 128 [2, 0.5, 0.25, 0.125]
Background Increase Relative SNR (dB) [-5, -10, -15, -20, -30]
Gaussian White Noise** Average SNR (dBW) [5, 7, 10, 12, 15]
* Determined class-wise by maintaining a consistent SSIM value of 0.1.
** Introduced as Additive White Gaussian Noise (AWGN) assuming that the
input signal power is 0 dBW.

ResNet-18 with CBAM attention. We explore various training
techniques, including adversarial training, where we generate
PGD perturbations with parameters ϵ = 0.1, α = 0.01, and
perform 20 iterations. For real-time CVD transformation, we
compute a 256-point FFT along the time dimension of the
spectrogram during preprocessing. Our image augmentation
techniques encompass Color Jitter for contrast and brightness
adjustments, Random Resized Crop to (224, 224) following
random cropping (200, 200), and Random Gaussian Blur with
a kernel size of 3 and a 20% chance of application. In the
case of spec augmentation, we utilize Temporal Warping with
a maximum warping distance of 40 time steps, along with
Frequency Masking and Temporal Masking with maximum
masked ratios of 0.15 and 0.5, respectively.

The optimization objective is based on Cross Entropy Loss.
The optimization process employs the Adam optimizer with a
learning rate of either 10−3 or 10−4. To adaptively adjust the
learning rate when the validation losses plateau, we utilize the
ReduceLROnPlateau scheduler to enhance convergence. The
selection of the best model is determined by monitoring the
validation loss. Early stopping is incorporated with a patience
of 5 epochs, meaning that training halts if the validation loss
does not improve within this specified window.

D. Evaluation Metrics

Considering the balanced nature of the dataset, accuracy
serves as the primary evaluation metric for the original dataset.
For a comprehensive assessment of robustness, we adopt the
Corruption Error (CE) metric [4]. The formula for CE is as
follows:

CEi =

∑s
l=1 (1−Acci,l)∑s

l=1

(
1−Accbasei,l

) (10)

where Acci,l represents the accuracy of a corrupted test set
i at a specific severity level l ∈ [1, s] , and Accbasei,l denotes
the baseline model’s accuracy. In essence, CE quantifies the
relative performance degradation with respect to the base
model for a given test corruption.

To evaluate the model’s overall robustness across different
corruptions, we employ the mean Corruption Error (mCE)
metric: mCE = 1

N

∑N
i=1 CEi, where N represents the number

of corruptions. This metric aligns with the definition of corrup-
tion robustness outlined in section IV-A. While mCE is capable
of evaluating the model’s performance on corrupted sets, it
may not fully consider the original performance. In situations
where a certain level of accuracy trade-off is acceptable in
order to ensure consistent performance across both clean and
corrupted datasets, we adopt the concept of Relative mCE
(RmCE):

RmCE =
1

N

∑s
l=1 (Accclean −Acci,l)∑s

l=1

(
Accbaseclean −Accbasei,l

) , (11)

where Accclean is the accuracy on the clean test set. RmCE
provides a more nuanced perspective by quantifying the degree
of performance drop compared to the accuracy on the clean
test set.

VII. RESULT ANALYSIS

A. Classification Accuracy of Models

Table III provides a performance comparison of various
models for indoor and continuous aquatic HAR. All models
demonstrate high accuracy on the indoor HAR dataset, with
minor variations due to the relatively limited dataset size.
However, the aquatic HAR dataset presents more challenges,
resulting in lower accuracy across models. The model perfor-
mance ranking indicates that ResNet outperforms VGG, which
in turn surpasses CRNN, followed by Conv1D LSTM. This
ranking underscores the significance of capturing local mo-
tion patterns for accurately classifying continuous activities.
Deeper convolutional architectures, like ResNet-18, are more
suitable for handling complex recognition tasks but demand
greater computational resources. Conversely, the lightweight
Conv1D LSTM is better suited for simpler tasks.

The confusion matrix, illustrated in fig. 4, provides insights
into class-wise accuracy. In indoor HAR, high-precision classi-
fication is achieved for most classes, with occasional confusion
between activities like ’drink’ and ’pick.’ Higher-capacity
models improve all classes. For aquatic HAR, distinguishing
between activities such as ’freestyle’ and ’breaststroke’ proves
challenging. Temporal models yield enhanced differentiation
for ’backstroke’ and ’breaststroke,’ although they struggle with
’float.’ VGG-7 performs well in classifying ’float’ but faces
difficulties with swimming styles. ResNet-18 significantly
improves the classification of dynamic activities like ’struggle.’

Saliency maps, depicted in fig. 5, provide further insights
into the models’ predictions. Temporal models emphasize the
temporal dimension, with Conv1D LSTM showing relatively
weaker emphasis on the Doppler dimension. The CRNN
architecture enhances Doppler dimension emphasis through
the utilization of 2D convolutions. VGG places greater focus
on local patterns, while ResNet-18 exhibits a tendency to
attend to background areas. Similar observations apply to
aquatic HAR, where the overfitting of ResNet-18 becomes
more pronounced. Notably, extreme scenarios like the ’float’
activity reveal predictions based on background occupancy
rather than specific activities.
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Fig. 4. Confusion Matrix

TABLE III
CLASSIFICATION PERFORMANCE

Model Accuracy(%) Params(G) FLOPs(M) Time(ms)
Indoor Aquatic

Conv1D LSTM 94.53 80.31 0.008 0.111 0.609
CRNN 94.53 82.46 0.415 0.895 0.279
VGG-7 93.49 85.56 2.095 0.298 0.226
ResNet-18 95.83 88.73 1.824 11.180 4.576

ResNet-18+CBAM 95.31 90.89 1.825 11.269 11.048
ResNet-18+CVD 93.49 78.48 1.824 11.180 5.083
ResNet-18+ImageAug 96.88 87.50 1.824 11.180 4.576
ResNet-18+SpecAug 95.83 90.94 1.824 11.180 4.576
ResNet-18+Adv 94.79 87.17 1.824 11.180 4.576
ResNet-18+All 93.75 88.44 1.824 11.180 4.576
* The inference time was measured using an Nvidia RTX 2080 Ti.

B. Robusntess Analysis of Models

The baseline model selected for further analysis is ResNet-
18 due to its high accuracy on both datasets. Before proceeding
to compare the methods using the robustness metric, we
firstly inspect the performance drop for different datasets and
corruption types. Figure 6 shows the accuracy with respect
to different corruptions. Notably, scene-based HAR exhibits
lower sensitivity to noise and temporal corruptions. Doppler
and intensity corruptions appear to have a more consistent
impact across datasets.

Table IV provides a comparative analysis of robustness to
different corruption types across methods. All models exhibit
lower robustness compared to the ResNet-18 baseline, as indi-
cated by higher mCE values. Analyzing the relative mCE val-
ues, we observe that CRNN showcases a smaller performance
drop (RmCE 0.88) relative to the clean dataset compared
to ResNet. This trend is aligned with the observations from

saliency maps, where CRNN demonstrates better attention to
the temporal and Doppler dimensions, while ResNet-18 relies
more on features from the background.

Inspecting corruption-wise CE, temporal models outperform
ResNet-18 in noise corruptions on both datasets since the
homegeneous noise has less impact on the temporal relation-
ships. Conversely, ResNet-18 demonstrates superior perfor-
mance in handling temporal corruptions and variations in SNR
due to its ability to identify local patterns. VGG’s emphasis
on activity patterns rather than background details, explains
its reduced sensitivity to increased background noise levels.
Furthermore, VGG, featuring a smaller receptive field, is
extreme sensitive to scaling and dropping corruptions, whereas
ResNet’s superior utilization of global information results in
improved performance.

Dataset-specific differences are highlighted in yellow in
table IV. Temporal models excel against frequency corrup-
tions in the first dataset and struggle in the second. The
underlying reason can be attributed to the temporal model’s
tendency to treat each frame as a holistic entity. As a result, it
demonstrates resilience to Doppler corruptions in the simpler
dataset with clear energy fluctuations over time. In the aquatic
dataset, where swimming activities manifest similar fluctu-
ations, doppler corruptions disrupt the energy distribution,
leading to the model’s struggle in distinguishing activities.
Regarding temporal masking, all three models show lower
performance compared to ResNet in the first dataset, but they
demonstrate superior performance in the second dataset. This
phenomenon can be explained by considering that the ResNet
model trained on the aquatic dataset overfit to the background.
The information loss introduced by temporal masking makes
the weak activity signals challenging to identify, but this has a
comparatively lesser impact on the background. Interestingly,
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Fig. 5. Saliency Maps for Model Architectures

VGG performs better than ResNet when subjected to local
random noise in the first dataset but worse in the second
dataset. The saliency map analysis suggests that the first VGG
model effectively attends to activity patterns, making it robust
to noise, while the second model relies more on local patterns,
making it more sensitive to random noise. In summary, from a
robustness perspective, the primary distinction between these
two datasets lies in the temporal characteristics of the captured
activities.

Fig. 6. Accuracy for Corruption Types

C. Analysis of Improved Models

Notably, the baseline model, ResNet-18, demonstrates high
accuracy in both datasets. However, upon closer inspection of
the saliency map and mCE, we observe that ResNet tends
to overfit to background cells, particularly evident in the
aquatic dataset. This overfitting phenomenon compromises the
model’s robustness and raises concerns about its generalization
to activities not explicitly represented in the dataset. Thus,
it becomes imperative to explore potential modifications that
can alleviate the issue of overfitting and improve robustness.
We tested a range of methods, including changes in model
architecture, data augmentation, and adversarial training. The
results of both classification and robustness evaluations are
presented in the lower sections of table III and table IV,
respectively.

From table III, several key observations can be made.
Firstly, due to the small size of the indoor HAR dataset,
slight performance improvements or degradation are observed.
However, more noticeable performance enhancements are
observed on the aquatic dataset. The integration of CBAM
attention modules or the application of spec augmentation
contribute to improved performance. It is important to note
that the performance boost from attention modules comes
at the expense of increased inference time. In contrast, data
augmentation techniques lead to performance improvements
without additional computational cost. On the other hand, the
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TABLE IV
ROBUSNTESS TO CORRUPTIONS

Indoor HAR Dataset

Method mCE RmCE SNR ↓ Add Noise Freq Scale Freq Jitter Freq STFT Temp Scale Temp Drop Temp STFT Temp Mask

ConvLSTM 1.29 1.23 2.84 0.53 1.07 0.88 0.77 1.11 1.30 1.25 1.90
CRNN 1.06 0.88 2.24 0.43 0.90 0.68 0.69 1.00 1.16 1.24 1.26
VGG-7 1.61 2.10 0.50 0.60 1.28 2.47 1.03 1.73 2.29 2.25 2.34
ResNet-18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResNet-18+CBAM 1.33 1.40 2.04 2.29 1.09 1.04 0.94 1.18 1.24 1.09 1.03
ResNet-18+CVD 1.30 1.42 0.28 0.49 1.31 1.71 0.95 1.62 2.05 1.87 1.43
ResNet-18+Adv 0.73 0.29 0.75 0.37 0.71 0.42 0.69 0.67 0.78 0.98 1.17
ResNet-18+ImageAug 0.80 1.19 0.20 0.96 0.16 0.52 0.79 0.94 1.20 1.26 1.19
ResNet-18+SpecAug 0.70 0.37 0.49 0.90 0.97 0.63 0.93 0.52 0.56 0.81 0.51
ResNet-18+All 0.79 0.51 0.29 0.50 0.36 0.49 0.70 1.23 1.22 1.49 0.87

Aquatic HAR Dataset

Method mCE RmCE SNR↓ Add Noise Freq Scale Freq Smear Freq STFT Temp Scale Temp Drop Temp STFT Temp Mask

ConvLSTM 1.22 2.31 1.54 0.82 1.25 1.47 1.05 1.47 1.34 1.26 0.79
CRNN 1.11 0.80 1.51 0.72 0.93 1.26 1.00 1.35 1.27 1.46 0.49
VGG-7 1.19 1.24 0.62 1.37 1.26 1.69 1.13 1.47 1.36 1.30 0.54
ResNet-18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResNet-18+CBAM 1.03 1.20 1.73 0.61 0.98 0.97 1.05 1.05 1.00 1.10 0.81
ResNet-18+CVD 1.71 1.95 0.63 1.06 1.33 1.50 1.12 3.31 2.72 2.60 1.12
ResNet-18+Adv 0.78 0.50 0.76 0.56 0.83 0.81 0.78 0.89 0.92 0.87 0.62
ResNet-18+ImageAug 0.99 1.08 0.32 0.52 0.59 1.01 0.81 1.75 1.56 1.51 0.83
ResNet-18+SpecAug 0.73 0.65 1.27 0.43 0.81 0.83 0.83 0.74 0.75 0.69 0.18
ResNet-18+All 0.68 0.43 0.54 0.49 0.86 0.80 0.82 0.84 0.82 0.76 0.23

introduction of adversarial training results in a slight negative
impact on accuracy for both datasets, which aligns with the lit-
erature indicating that adversarial robustness can conflict with
accuracy. The CVD transformation shows comparable perfor-
mance on the indoor HAR dataset and worse performance
on the aquatic dataset. Although the CVD transformation can
yield better representations for periodic motion patterns, it is
less effective for continuous HAR tasks. In fact, applying the
CVD transformation on partially observed motion could hinder
the identification of local motion patterns, thereby posing a
challenge in discerning relevant features.

Since classification accuracy alone may not fully reveal
model superiority, a comprehensive analysis of robustness to
corruptions, as depicted in table IV, is conducted for further
insights. The best and worst performances are highlighted in
green and red, respectively, to facilitate visualization. Notably,
similar trends emerge across datasets, suggesting a dataset-
independent characteristics of the evaluation. Firstly, the inte-
gration of CBAM attention modules appears to compromise
the robustness of ResNet, particularly evident as background
noise intensity increases. A potential explanation lies in the
tendency of the ResNet model equipped with CBAM attention
to excessively focus on background cells, as inferred from the
saliency map in fig. 5.

As a data augmentation technique, image augmentation sig-
nificantly enhances robustness against SNR corruptions, albeit
at the cost of performance drop in temporal corruptions. The
CVD transformation displays high sensitivity to corruptions,
especially for the temporal corruptions. The reason is well
explained when we analyze the performance drop of CVD in
accuracy. Spec augmentation substantially improves resistance
to temporal corruptions, thanks to the inclusion of tempo-

ral warping. Adversarial training consistently reduces errors
across various corruption types at the cost of accuracy drop.
When combining spec augmentation, image augmentation, and
adversarial training, robustness improves across all categories,
resulting in the lowest mCE (0.68). The final row in fig. 5
highlights that the implementation of data augmentations and
adversarial training enables the model to effectively focus
on motion patterns, thereby partially explaining the improved
robustness.

VIII. CONCLUSION

This study has presented a framework for analyzing the
corruption robustness of radar micro-Doppler spectrogram
classification. Corruptions capturing human activity variability
and radar signal processing complexities has been applied
to indoor and aquatic HAR tasks. CNNs have demonstrated
superior accuracy and robustness among the test models, but
overfitting is a concern with deep CNNs. Strategies like CVD
transform, adversarial training, and data augmentation have
been explored. The obtained results have demonstrated that
CVD representation provides marginal gains for indoor HAR
and decreases the robustness for aquatic HAR. Adversarial
training slightly reduces accuracy but improves robustness.
Data augmentation effectively enhances robustness and miti-
gates overfitting in deep CNNs. Combining adversarial training
and data augmentation has been shown to achieve a balanced
trade-off between accuracy and corruption robustness. Future
work will focus on refining data augmentation and model
architecture for improved robustness in radar HAR tasks.
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P. Frossard, “Prime: A few primitives can boost robustness to common
corruptions,” in European Conference on Computer Vision, pp. 623–640,
Springer, 2022.

[26] J. Sun, A. Mehra, B. Kailkhura, P.-Y. Chen, D. Hendrycks, J. Hamm,
and Z. M. Mao, “A spectral view of randomized smoothing under com-
mon corruptions: Benchmarking and improving certified robustness,” in
European Conference on Computer Vision, pp. 654–671, Springer, 2022.

[27] Z. Zhang, D. Meng, L. Zhang, W. Xiao, and W. Tian, “The range
of harmful frequency for dnn corruption robustness,” Neurocomputing,
vol. 481, pp. 294–309, 2022.

[28] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and
M. Bethge, “Improving robustness against common corruptions by
covariate shift adaptation,” Advances in neural information processing
systems, vol. 33, pp. 11539–11551, 2020.

[29] E. Mintun, A. Kirillov, and S. Xie, “On interaction between augmen-
tations and corruptions in natural corruption robustness,” Advances in
Neural Information Processing Systems, vol. 34, pp. 3571–3583, 2021.

[30] K. Kireev, M. Andriushchenko, and N. Flammarion, “On the effective-
ness of adversarial training against common corruptions,” in Uncertainty
in Artificial Intelligence, pp. 1012–1021, PMLR, 2022.

[31] S. Hooker, A. Courville, G. Clark, Y. Dauphin, and A. Frome,
“What do compressed deep neural networks forget?,” arXiv preprint
arXiv:1911.05248, 2019.

[32] L. Timpl, R. Entezari, H. Sedghi, B. Neyshabur, and O. Saukh, “Un-
derstanding the effect of sparsity on neural networks robustness,” arXiv
preprint arXiv:2206.10915, 2022.

[33] M. A. Richards, Fundamentals of radar signal processing. McGraw-Hill
Education, 2022.

[34] N. Kern, J. Aguilar, P. Schoeder, and C. Waldschmidt, “Improving the
robustness of automotive gesture recognition by diversified simulation
datasets,” in 2023 IEEE Radar Conference (RadarConf23), pp. 1–6,
IEEE, 2023.
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